login
A202935
Number of (n+3) X 7 binary arrays with consecutive windows of four bits considered as a binary number nondecreasing in every row and column.
1
130321, 206145, 330853, 533832, 857408, 1360328, 2121734, 3245653, 4866027, 7152307, 10315635, 14615638, 20367858, 27951842, 37819916, 50506667, 66639157, 86947893, 112278577, 143604660, 182040724, 228856716, 285493058, 353576657
OFFSET
1,1
COMMENTS
Column 4 of A202939.
LINKS
FORMULA
Empirical: a(n) = (1/210)*n^7 + (11/20)*n^6 + (81/5)*n^5 + (1713/8)*n^4 + (90179/60)*n^3 + (337713/40)*n^2 + (15214631/420)*n + 83919.
Conjectures from Colin Barker, Jun 03 2018: (Start)
G.f.: x*(130321 - 836423*x + 2330681*x^2 - 3638908*x^3 + 3428986*x^4 - 1947234*x^5 + 616520*x^6 - 83919*x^7) / (1 - x)^8.
a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8) for n>8.
(End)
EXAMPLE
Some solutions for n=1:
..0..0..0..0..1..1..1....0..0..0..1..0..0..0....0..0..0..1..1..0..1
..0..0..0..1..0..0..0....0..0..0..0..1..0..1....0..0..0..1..1..0..0
..0..0..0..0..0..0..1....0..0..0..1..0..0..0....0..0..0..1..0..1..1
..0..0..1..1..1..1..1....0..1..1..1..1..1..1....0..0..0..0..0..1..0
CROSSREFS
Cf. A202939.
Sequence in context: A210273 A250961 A225026 * A013893 A013693 A103534
KEYWORD
nonn
AUTHOR
R. H. Hardin, Dec 26 2011
STATUS
approved