login
A202937
Number of (n+3) X 9 binary arrays with consecutive windows of four bits considered as a binary number nondecreasing in every row and column.
1
194481, 359970, 695114, 1360328, 2631416, 4958318, 9044252, 15949741, 27226555, 45087162, 72615870, 114028454, 174987698, 262982942, 387782408, 561967787, 801561301, 1126756210, 1562762514, 2140780404, 2899114844, 3884445518
OFFSET
1,1
COMMENTS
Column 6 of A202939.
LINKS
FORMULA
Empirical: a(n) = (1/15120)*n^9 + (1/96)*n^8 + (235/504)*n^7 + (725/72)*n^6 + 125*n^5 + (276005/288)*n^4 + (13991149/3024)*n^3 + (1320845/72)*n^2 + (24830539/420)*n + 111295.
Conjectures from Colin Barker, Jun 03 2018: (Start)
G.f.: x*(194481 - 1584840*x + 5847059*x^2 - 12729882*x^3 + 17952876*x^4 - 16970274*x^5 + 10737942*x^6 - 4382257*x^7 + 1046214*x^8 - 111295*x^9) / (1 - x)^10.
a(n) = 10*a(n-1) - 45*a(n-2) + 120*a(n-3) - 210*a(n-4) + 252*a(n-5) - 210*a(n-6) + 120*a(n-7) - 45*a(n-8) + 10*a(n-9) - a(n-10) for n>10.
(End)
EXAMPLE
Some solutions for n=1:
..0..0..0..0..0..1..0..1..0....0..0..0..0..0..1..1..1..1
..0..0..0..0..0..1..0..0..0....0..0..0..0..1..1..1..1..1
..0..0..0..0..0..1..1..0..1....0..0..0..0..0..1..1..0..1
..0..0..0..0..0..0..0..0..1....0..0..0..0..0..0..0..1..1
CROSSREFS
Cf. A202939.
Sequence in context: A232202 A344630 A131907 * A013901 A206052 A237088
KEYWORD
nonn
AUTHOR
R. H. Hardin, Dec 26 2011
STATUS
approved