OFFSET
0,2
COMMENTS
Sequence found by reading the line from 0, in the direction 0, 10, ..., in the square spiral whose vertices are the generalized pentagonal numbers A001318. Opposite numbers to the members of A033579 in the same spiral. - Omar E. Pol, Jul 17 2012
Partial sums give A163815. - Leo Tavares, Feb 25 2022
LINKS
Jeremy Gardiner, Table of n, a(n) for n = 0..3000
Milan Janjic and Boris Petkovic, A Counting Function, arXiv 1301.4550 [math.CO], 2013.
Leo Tavares, Illustration: Star Halves.
Pavlos Vavolas, Cellular automaton model of cardiac arrhythmias, University of Sheffield Department of Computer Science (2005), (see page 43). [broken link, abstract]
Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
FORMULA
a(n) = 2*n(3*n+2) = 6*n^2 + 4*n = 2*A045944(n).
a(n) = A080859(n) - 1. - Omar E. Pol, Jul 18 2012
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, Dec 28 2015
G.f.: 2*x*(5 + x)/(1 - x)^3. - Indranil Ghosh, Apr 10 2017
From Amiram Eldar, Mar 01 2022: (Start)
Sum_{n>=1} 1/a(n) = (Pi/sqrt(3) - 3*log(3) + 3)/8.
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/(4*sqrt(3)) - 3/8. (End)
E.g.f.: 2*exp(x)*x*(5 + 3*x). - Elmo R. Oliveira, Dec 12 2024
MAPLE
MATHEMATICA
Table[n(6n+4), {n, 0, 50}] (* or *) LinearRecurrence[{3, -3, 1}, {0, 10, 32}, 50] (* Harvey P. Dale, Dec 28 2015 *)
PROG
(PARI) x='x + O('x^50); concat([0], Vec(-2*x*(5 + x)/(x - 1)^3)) \\ Indranil Ghosh, Apr 10 2017
CROSSREFS
KEYWORD
nonn,easy,changed
AUTHOR
Jeremy Gardiner, Dec 24 2011
STATUS
approved