login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A202804
a(n) = n*(6*n+4).
5
0, 10, 32, 66, 112, 170, 240, 322, 416, 522, 640, 770, 912, 1066, 1232, 1410, 1600, 1802, 2016, 2242, 2480, 2730, 2992, 3266, 3552, 3850, 4160, 4482, 4816, 5162, 5520, 5890, 6272, 6666, 7072, 7490, 7920, 8362, 8816, 9282, 9760, 10250, 10752, 11266, 11792, 12330
OFFSET
0,2
COMMENTS
Sequence found by reading the line from 0, in the direction 0, 10, ..., in the square spiral whose vertices are the generalized pentagonal numbers A001318. Opposite numbers to the members of A033579 in the same spiral. - Omar E. Pol, Jul 17 2012
Partial sums give A163815. - Leo Tavares, Feb 25 2022
LINKS
Milan Janjic and Boris Petkovic, A Counting Function, arXiv 1301.4550 [math.CO], 2013.
Pavlos Vavolas, Cellular automaton model of cardiac arrhythmias, University of Sheffield Department of Computer Science (2005), (see page 43). [broken link, abstract]
FORMULA
a(n) = 2*n(3*n+2) = 6*n^2 + 4*n = 2*A045944(n).
a(n) = A080859(n) - 1. - Omar E. Pol, Jul 18 2012
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, Dec 28 2015
G.f.: 2*x*(5 + x)/(1 - x)^3. - Indranil Ghosh, Apr 10 2017
a(n) = A003154(n+1) - A005408(n). - Leo Tavares, Feb 25 2022
From Amiram Eldar, Mar 01 2022: (Start)
Sum_{n>=1} 1/a(n) = (Pi/sqrt(3) - 3*log(3) + 3)/8.
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/(4*sqrt(3)) - 3/8. (End)
E.g.f.: 2*exp(x)*x*(5 + 3*x). - Elmo R. Oliveira, Dec 12 2024
MAPLE
A202804:=n->n*(6*n+4): seq(A202804(n), n=0..100); # Wesley Ivan Hurt, Apr 09 2017
MATHEMATICA
Table[n(6n+4), {n, 0, 50}] (* or *) LinearRecurrence[{3, -3, 1}, {0, 10, 32}, 50] (* Harvey P. Dale, Dec 28 2015 *)
PROG
(PARI) x='x + O('x^50); concat([0], Vec(-2*x*(5 + x)/(x - 1)^3)) \\ Indranil Ghosh, Apr 10 2017
KEYWORD
nonn,easy,changed
AUTHOR
Jeremy Gardiner, Dec 24 2011
STATUS
approved