login
A199153
Decimal expansion of x>0 satisfying 3*x^2+2*sin(x)=1.
3
3, 3, 6, 4, 8, 2, 7, 0, 1, 9, 2, 3, 3, 5, 2, 8, 1, 5, 7, 7, 0, 3, 9, 4, 9, 3, 7, 6, 1, 1, 0, 6, 7, 7, 8, 1, 4, 4, 3, 6, 5, 3, 0, 1, 1, 7, 8, 4, 0, 0, 3, 6, 7, 9, 4, 6, 8, 5, 6, 3, 5, 3, 2, 4, 2, 5, 3, 4, 9, 3, 1, 1, 2, 9, 0, 3, 6, 8, 3, 7, 2, 5, 6, 4, 9, 3, 2, 1, 7, 3, 9, 8, 2, 0, 0, 1, 7, 2, 7
OFFSET
0,1
COMMENTS
See A198866 for a guide to related sequences. The Mathematica program includes a graph.
EXAMPLE
negative: -0.93194453919657480875799482221903577743...
positive: 0.336482701923352815770394937611067781443...
MATHEMATICA
a = 3; b = 2; c = 1;
f[x_] := a*x^2 + b*Sin[x]; g[x_] := c
Plot[{f[x], g[x]}, {x, -2, 2}, {AxesOrigin -> {0, 0}}]
r = x /. FindRoot[f[x] == g[x], {x, -.94, -.93}, WorkingPrecision -> 110]
RealDigits[r] (* A199152 *)
r = x /. FindRoot[f[x] == g[x], {x, .33, .34}, WorkingPrecision -> 110]
RealDigits[r] (* A199153 *)
CROSSREFS
Cf. A198866.
Sequence in context: A155169 A144624 A023827 * A182627 A135986 A334848
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Nov 03 2011
STATUS
approved