login
A199152
Decimal expansion of x<0 satisfying 3*x^2+2*sin(x)=1.
3
9, 3, 1, 9, 4, 4, 5, 3, 9, 1, 9, 6, 5, 7, 4, 8, 0, 8, 7, 5, 7, 9, 9, 4, 8, 2, 2, 2, 1, 9, 0, 3, 5, 7, 7, 7, 4, 3, 2, 4, 1, 6, 3, 2, 3, 9, 2, 4, 2, 2, 3, 1, 3, 6, 1, 2, 1, 0, 2, 9, 6, 0, 5, 1, 6, 3, 7, 4, 3, 3, 6, 3, 4, 4, 7, 8, 0, 9, 1, 8, 6, 6, 5, 1, 4, 5, 5, 7, 1, 6, 5, 7, 7, 3, 9, 3, 4, 5, 5
OFFSET
0,1
COMMENTS
See A198866 for a guide to related sequences. The Mathematica program includes a graph.
EXAMPLE
negative: -0.93194453919657480875799482221903577743...
positive: 0.33648270192335281577039493761106778144...
MATHEMATICA
a = 3; b = 2; c = 1;
f[x_] := a*x^2 + b*Sin[x]; g[x_] := c
Plot[{f[x], g[x]}, {x, -2, 2}, {AxesOrigin -> {0, 0}}]
r = x /. FindRoot[f[x] == g[x], {x, -.94, -.93}, WorkingPrecision -> 110]
RealDigits[r] (* A199152 *)
r = x /. FindRoot[f[x] == g[x], {x, .33, .34}, WorkingPrecision -> 110]
RealDigits[r] (* A199153 *)
CROSSREFS
Cf. A198866.
Sequence in context: A309893 A188887 A250091 * A306808 A086232 A133867
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Nov 03 2011
STATUS
approved