login
A199156
Decimal expansion of x < 0 satisfying 3*x^2+2*sin(x) = 3.
3
1, 2, 8, 0, 1, 1, 7, 0, 2, 7, 8, 2, 3, 5, 9, 2, 9, 0, 0, 0, 4, 5, 6, 8, 9, 8, 4, 5, 5, 5, 8, 5, 5, 4, 9, 7, 9, 6, 5, 5, 2, 8, 2, 3, 5, 3, 6, 5, 3, 4, 8, 6, 3, 0, 8, 5, 6, 7, 7, 8, 2, 6, 9, 0, 0, 8, 4, 7, 4, 8, 3, 3, 1, 9, 7, 1, 7, 6, 9, 0, 6, 9, 7, 1, 8, 5, 9, 5, 0, 8, 4, 8, 2, 6, 2, 9, 7, 7, 4, 8, 9, 7
OFFSET
1,2
COMMENTS
See A198866 for a guide to related sequences. The Mathematica program includes a graph.
EXAMPLE
negative: -1.280117027823592900045689845558554979655...
positive: 0.741456706769858920159460956349108949987...
MATHEMATICA
a = 3; b = 2; c = 3;
f[x_] := a*x^2 + b*Sin[x]; g[x_] := c
Plot[{f[x], g[x]}, {x, -2, 2}, {AxesOrigin -> {0, 0}}]
r = x /. FindRoot[f[x] == g[x], {x, -1.29, -1.28}, WorkingPrecision -> 110]
RealDigits[r] (* A199156 *)
r = x /. FindRoot[f[x] == g[x], {x, .74, .75}, WorkingPrecision -> 110]
RealDigits[r] (* A199157 *)
CROSSREFS
Cf. A198866.
Sequence in context: A242530 A073410 A021361 * A073001 A088153 A259173
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Nov 03 2011
EXTENSIONS
a(93) onwards corrected by Georg Fischer, Aug 01 2021
STATUS
approved