login
A198141
Decimal expansion of greatest x having x^2-2x=-3*cos(x).
3
2, 9, 9, 1, 5, 5, 6, 4, 2, 3, 8, 9, 7, 8, 6, 3, 5, 6, 2, 5, 7, 2, 7, 2, 2, 6, 4, 8, 2, 4, 8, 2, 2, 0, 3, 1, 6, 6, 9, 8, 5, 0, 9, 3, 6, 1, 0, 2, 4, 7, 3, 4, 2, 9, 4, 1, 6, 9, 7, 2, 9, 1, 2, 9, 6, 6, 4, 2, 0, 4, 8, 6, 1, 7, 9, 0, 1, 0, 8, 8, 4, 7, 3, 1, 5, 3, 2, 9, 1, 3, 8, 0, 6, 0, 3, 2, 9, 0, 7, 8, 8, 7
OFFSET
1,1
COMMENTS
See A197737 for a guide to related sequences. The Mathematica program includes a graph.
EXAMPLE
least x: 1.25361062916653958630784246694528362...
greatest x: 2.99155642389786356257272264824822031...
MATHEMATICA
a = 1; b = -2; c = -3;
f[x_] := a*x^2 + b*x; g[x_] := c*Cos[x]
Plot[{f[x], g[x]}, {x, -1, 4}]
r1 = x /. FindRoot[f[x] == g[x], {x, 1.25, 1.26}, WorkingPrecision -> 110]
RealDigits[r1] (* A198140 *)
r2 = x /. FindRoot[f[x] == g[x], {x, 2.9, 3.0}, WorkingPrecision -> 110]
RealDigits[r2] (* A198141 *)
CROSSREFS
Cf. A197737.
Sequence in context: A244292 A011072 A175295 * A336043 A340723 A201765
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Oct 21 2011
STATUS
approved