login
A198139
Decimal expansion of greatest x having 3*x^2+4x=4*cos(x).
3
5, 8, 1, 7, 2, 0, 0, 7, 9, 7, 3, 1, 6, 5, 9, 7, 2, 2, 8, 4, 2, 8, 6, 5, 9, 2, 3, 2, 7, 1, 4, 8, 8, 2, 7, 4, 9, 0, 7, 5, 9, 9, 1, 9, 8, 4, 9, 2, 8, 9, 2, 5, 9, 8, 6, 9, 8, 4, 4, 3, 4, 7, 2, 5, 8, 1, 1, 3, 0, 3, 7, 5, 4, 1, 9, 5, 2, 2, 4, 1, 8, 7, 9, 2, 9, 8, 8, 4, 1, 3, 4, 0, 5, 2, 8, 0, 4, 1, 1
OFFSET
0,1
COMMENTS
See A197737 for a guide to related sequences. The Mathematica program includes a graph.
EXAMPLE
least x: -1.447057151041655078779471681449880627...
greatest x: 0.58172007973165972284286592327148827490...
MATHEMATICA
a = 3; b = 4; c = 4;
f[x_] := a*x^2 + b*x; g[x_] := c*Cos[x]
Plot[{f[x], g[x]}, {x, -2, 1}]
r1 = x /. FindRoot[f[x] == g[x], {x, -1.5, -1.4}, WorkingPrecision -> 110]
RealDigits[r1] (* A198138 *)
r2 = x /. FindRoot[f[x] == g[x], {x, .58, .59}, WorkingPrecision -> 110]
RealDigits[r2] (* A198139 *)
CROSSREFS
Cf. A197737.
Sequence in context: A372869 A195356 A263497 * A247277 A171709 A093157
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Oct 23 2011
STATUS
approved