login
A198143
Decimal expansion of greatest x having x^2-3x=-3*cos(x).
3
3, 6, 9, 2, 3, 4, 7, 7, 7, 3, 9, 2, 7, 9, 8, 9, 8, 6, 0, 1, 8, 2, 8, 4, 7, 7, 0, 6, 2, 9, 9, 4, 0, 1, 0, 4, 9, 8, 7, 2, 7, 9, 3, 8, 2, 1, 9, 3, 0, 3, 1, 4, 4, 1, 9, 0, 0, 1, 4, 4, 4, 4, 4, 2, 3, 9, 5, 3, 1, 0, 9, 9, 2, 4, 3, 7, 1, 6, 5, 6, 8, 5, 9, 2, 7, 2, 9, 3, 0, 3, 1, 0, 2, 6, 3, 1, 9, 6, 3
OFFSET
1,1
COMMENTS
See A197737 for a guide to related sequences. The Mathematica program includes a graph.
EXAMPLE
least x: 0.89291071141777527373996831831704569...
greatest x: 3.69234777392798986018284770629940...
MATHEMATICA
a = 1; b = -3; c = -3;
f[x_] := a*x^2 + b*x; g[x_] := c*Cos[x]
Plot[{f[x], g[x]}, {x, -1, 4}]
r1 = x /. FindRoot[f[x] == g[x], {x, 0.89, 0.90}, WorkingPrecision -> 110]
RealDigits[r1] (* A198142 *)
r2 = x /. FindRoot[f[x] == g[x], {x, 3.6, 3.7}, WorkingPrecision -> 110]
RealDigits[r2] (* A198143 *)
CROSSREFS
Cf. A197737.
Sequence in context: A179615 A183033 A199735 * A131579 A059626 A258226
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Oct 21 2011
STATUS
approved