login
A201765
Decimal expansion of the least x satisfying 9-x^2=e^x.
3
2, 9, 9, 1, 6, 2, 0, 6, 3, 0, 1, 2, 8, 1, 8, 7, 5, 0, 5, 2, 3, 7, 9, 6, 0, 2, 9, 2, 2, 9, 2, 9, 3, 8, 0, 3, 8, 0, 3, 8, 7, 8, 7, 3, 4, 2, 2, 5, 3, 6, 1, 2, 3, 8, 5, 4, 8, 1, 1, 5, 0, 4, 1, 9, 3, 5, 3, 0, 4, 6, 1, 3, 5, 5, 8, 0, 8, 8, 7, 2, 0, 8, 2, 9, 3, 3, 1, 7, 9, 3, 1, 3, 0, 2, 6, 5, 6, 4, 0
OFFSET
1,1
COMMENTS
See A201741 for a guide to related sequences. The Mathematica program includes a graph.
EXAMPLE
least: -2.9916206301281875052379602922929380380...
greatest: 1.76960110019935768918659677471067851...
MATHEMATICA
a = -1; b = 0; c = 9;
f[x_] := a*x^2 + b*x + c; g[x_] := E^x
Plot[{f[x], g[x]}, {x, -3, 3}, {AxesOrigin -> {0, 0}}]
r = x /. FindRoot[f[x] == g[x], {x, -2.9, -3.0}, WorkingPrecision -> 110]
RealDigits[r] (* A201765 *)
r = x /. FindRoot[f[x] == g[x], {x, 1.7, 1.8}, WorkingPrecision -> 110]
RealDigits[r] (* A201766 *)
CROSSREFS
Cf. A201741.
Sequence in context: A198141 A336043 A340723 * A160331 A019702 A201899
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Dec 05 2011
STATUS
approved