login
A198062
Array read by antidiagonals, m>=0, n>=0, k>=0, A(m, n, k) = sum{j=0..m} sum{i=0..m} (-1)^(j+i)*C(i,j)*n^j*k^(m-j).
1
1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 2, 1, 0, 1, 1, 4, 2, 1, 0, 1, 1, 8, 3, 2, 1, 0, 1, 1, 16, 4, 4, 3, 1, 0, 1, 1, 32, 5, 8, 9, 3, 1, 0, 1, 1, 64, 6, 16, 27, 7, 3, 1, 0, 1, 1, 128, 7, 32, 81, 15, 7, 3, 1, 0, 1, 1, 256, 8, 64, 243, 31, 15, 9, 4, 1, 0, 1, 1, 512, 9
OFFSET
0,14
LINKS
FORMULA
A007318(n,k) = A(0,n+1,k+1)*C(n,k)^1/(k+1)^0,
A103371(n,k) = A(1,n+1,k+1)*C(n,k)^2/(k+1)^1,
A194595(n,k) = A(2,n+1,k+1)*C(n,k)^3/(k+1)^2,
A197653(n,k) = A(3,n+1,k+1)*C(n,k)^4/(k+1)^3,
A197654(n,k) = A(4,n+1,k+1)*C(n,k)^5/(k+1)^4,
A197655(n,k) = A(5,n+1,k+1)*C(n,k)^6/(k+1)^5.
EXAMPLE
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9]
-------------------------------------------------
[0] 1 1 1 1 1 1 1 1 1 1 A000012
[1] 0 1 1 2 2 2 3 3 3 3 A003056
[2] 0 1 1 4 3 4 9 7 7 9 A073254
[3] 0 1 1 8 4 8 27 15 15 27 A198063
[4] 0 1 1 16 5 16 81 31 31 81 A198064
[5] 0 1 1 32 6 32 243 63 63 243 A198065
MAPLE
A198062_RowAsTriangle := proc(m) local pow; pow :=(a, b)->`if`(a=0 and b=0, 1, a^b): proc(n, k) local i, j; add(add((-1)^(j + i)*binomial(i, j)*pow(n, j)* pow(k, m-j), i=0..m), j=0..m) end: end:
for m from 0 to 2 do seq(print(seq(A198062_RowAsTriangle(m)(n, k), k=0..n)), n=0..5) od;
MATHEMATICA
max = 9; RowAsTriangle[m_][n_, k_] := Module[{pow}, pow[a_, b_] := If[a == 0 && b == 0, 1, a^b]; Module[{i, j}, Sum[Sum[(-1)^(j+i)*Binomial[i, j]*pow[n, j]*pow[k, m-j], {i, 0, m}], {j, 0, m}]]]; t = Flatten /@ Table[RowAsTriangle[m][n, k], {m, 0, max}, {n, 0, max}, {k, 0, n}]; Table[t[[n-k+1, k+1]], {n, 0, max}, {k, 0, n }] // Flatten (* Jean-François Alcover, Feb 25 2014, after Maple *)
CROSSREFS
Sequence in context: A334895 A355262 A355576 * A347617 A226690 A318557
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Nov 02 2011
STATUS
approved