login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A195616
Denominators of Pythagorean approximations to 3.
5
12, 444, 16872, 640680, 24328980, 923860548, 35082371856, 1332206269968, 50588755886940, 1921040517433740, 72948950906595192, 2770139093933183544, 105192336618554379492, 3994538652411133237140, 151687276455004508631840
OFFSET
1,1
COMMENTS
See A195500 for a discussion and references.
FORMULA
From Colin Barker, Jun 04 2015: (Start)
a(n) = 37*a(n-1) + 37*a(n-2) - a(n-3).
G.f.: 12*x / ((1+x)*(1-38*x+x^2)). (End)
From G. C. Greubel, Feb 13 2023: (Start)
a(n) = (3/10)*(A097314(n) + (-1)^n).
a(n) = (1/20)*(A085447(2*n+1) - 6*(-1)^n). (End)
MATHEMATICA
r = 3; z = 20;
p[{f_, n_}] := (#1[[2]]/#1[[
1]] &)[({2 #1[[1]] #1[[2]], #1[[1]]^2 - #1[[
2]]^2} &)[({Numerator[#1], Denominator[#1]} &)[
Array[FromContinuedFraction[
ContinuedFraction[(#1 + Sqrt[1 + #1^2] &)[f], #1]] &, {n}]]]];
{a, b} = ({Denominator[#1], Numerator[#1]} &)[
p[{r, z}]] (* A195616, A195617 *)
Sqrt[a^2 + b^2] (* A097315 *)
(* Peter J. C. Moses, Sep 02 2011 *)
Table[(1/20)*(LucasL[2*n+1, 6] -6*(-1)^n), {n, 40}] (* G. C. Greubel, Feb 13 2023 *)
PROG
(PARI) Vec(12*x/((1+x)*(1-38*x+x^2)) + O(x^20)) \\ Colin Barker, Jun 04 2015
(Magma) I:=[12, 444, 16872]; [n le 3 select I[n] else 37*Self(n-1) +37*Self(n-2) -Self(n-3): n in [1..40]]; // G. C. Greubel, Feb 13 2023
(SageMath)
A085447=BinaryRecurrenceSequence(6, 1, 2, 6)
[(A085447(2*n+1) - 6*(-1)^n)/20 for n in range(1, 41)] # G. C. Greubel, Feb 13 2023
CROSSREFS
KEYWORD
nonn,easy,frac
AUTHOR
Clark Kimberling, Sep 22 2011
STATUS
approved