login
A195615
Numerators b(n) of Pythagorean approximations b(n)/a(n) to 2.
3
15, 273, 4895, 87841, 1576239, 28284465, 507544127, 9107509825, 163427632719, 2932589879121, 52623190191455, 944284833567073, 16944503814015855, 304056783818718321, 5456077604922913919, 97905340104793732225, 1756840044281364266127
OFFSET
1,1
COMMENTS
See A195500 for discussion and list of related sequences; see A195614 for Mathematica program.
FORMULA
From Colin Barker, Jun 04 2015: (Start)
a(n) = 17*a(n-1) + 17*a(n-2) - a(n-3).
G.f.: x*(15 + 18*x - x^2)/((1+x)*(1-18*x+x^2)). - Colin Barker, Jun 04 2015
a(n) = ((-1)^n + (2+sqrt(5))*(9+4*sqrt(5))^n + (2-sqrt(5))*(9+4*sqrt(5))^(-n))/5. - Colin Barker, Mar 04 2016
From G. C. Greubel, Feb 13 2023: (Start)
a(n) = Fibonacci(3*n+1)*Fibonacci(3*n+2).
a(n) = (1/5)*(4*A049629(n) + (-1)^n - 5*[n=0]). (End)
MATHEMATICA
LinearRecurrence[{17, 17, -1}, {15, 273, 4895}, 40] (* G. C. Greubel, Feb 13 2023 *)
PROG
(PARI) Vec(x*(15+18*x-x^2)/((1+x)*(1-18*x+x^2)) + O(x^50)) \\ Colin Barker, Jun 04 2015
(Magma) [Fibonacci(3*n+1)*Fibonacci(3*n+2): n in [1..40]]; // G. C. Greubel, Feb 13 2023
(SageMath) [fibonacci(3*n+1)*fibonacci(3*n+2) for n in range(1, 41)] # G. C. Greubel, Feb 13 2023
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Sep 22 2011
STATUS
approved