login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A195500 Denominators a(n) of Pythagorean approximations b(n)/a(n) to sqrt(2). 80
3, 228, 308, 5289, 543900, 706180, 1244791, 51146940, 76205040, 114835995824, 106293119818725, 222582887719576, 3520995103197240, 17847666535865852, 18611596834765355, 106620725307595884, 269840171418387336, 357849299891217865 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

For each positive real number r, there is a sequence (a(n),b(n),c(n)) of primitive Pythagorean triples such that the limit of b(n)/a(n) is r and

|r-b(n+1)/a(n+1)| < |r-b(n)/a(n)|. Peter Shiu showed how to find (a(n),b(n)) from the continued fraction for r, and Peter J. C. Moses incorporated Shiu's method in the Mathematica program shown below.

Examples:

r...........a(n)..........b(n)..........c(n)

sqrt(2).....A195500.......A195501.......A195502

sqrt(3).....A195499.......A195503.......A195531

sqrt(5).....A195532.......A195533.......A195534

sqrt(6).....A195535.......A195536.......A195537

sqrt(8).....A195538.......A195539.......A195540

sqrt(12)....A195680.......A195681.......A195682

e...........A195541.......A195542.......A195543

pi..........A195544.......A195545.......A195546

tau.........A195687.......A195688.......A195689

1...........A046727.......A084159.......A001653

2...........A195614.......A195615.......A007805

3...........A195616.......A195617.......A097315

4...........A195619.......A195620.......A078988

5...........A195622.......A195623.......A097727

1/2.........A195547.......A195548.......A195549

3/2.........A195550.......A195551.......A195552

5/2.........A195553.......A195554.......A195555

1/3.........A195556.......A195557.......A195558

2/3.........A195559.......A195560.......A195561

1/4.........A195562.......A195563.......A195564

5/4.........A195565.......A195566.......A195567

7/4.........A195568.......A195569.......A195570

1/5.........A195571.......A195572.......A195573

2/5.........A195574.......A195575.......A195576

3/5.........A195577.......A195578.......A195579

4/5.........A195580.......A195611.......A195612

sqrt(1/2)...A195625.......A195626.......A195627

sqrt(1/3)...{1}+A195503...{0}+A195499...{1}+A195531

sqrt(2/3)...A195631.......A195632.......A195633

sqrt(3/4)...A195634.......A195635.......A195636

LINKS

Table of n, a(n) for n=1..18.

Ron Knott, Pythagorean Angles

Peter Shiu, The shapes and sizes of Pythagorean triangles, The Mathematical Gazette 67, no. 439 (March 1983) 33-38.

EXAMPLE

For r=sqrt(2), the first five fractions b(n)/a(n) can be read from the following five primitive Pythagorean triples (a(n), b(n), c(n)) = (A195500, A195501, A195502):

(3,4,5); |r - b(1)/a(1)| = 0.08...

(228,325,397); |r - b(2)/a(2)| = 0.011...

(308,435,533); |r - b(3)/a(3)| = 0.0018...

(5289,7480,9161); |r - b(4)/a(4)| = 0.000042...

(543900,769189,942061); |r - b(5)/a(5)| = 0.0000003...

MAPLE

Shiu := proc(r, n)

t := r+sqrt(1+r^2) ;

cf := numtheory[cfrac](t, n+1) ;

mn := numtheory[nthconver](cf, n) ;

(mn-1/mn)/2 ;

end proc:

A195500 := proc(n)

Shiu(sqrt(2), n) ;

denom(%) ;

end proc: # R. J. Mathar, Sep 21 2011

MATHEMATICA

r = Sqrt[2]; z = 18;

p[{f_, n_}] := (#1[[2]]/#1[[

1]] &)[({2 #1[[1]] #1[[2]], #1[[1]]^2 - #1[[

2]]^2} &)[({Numerator[#1], Denominator[#1]} &)[

Array[FromContinuedFraction[

ContinuedFraction[(#1 + Sqrt[1 + #1^2] &)[f], #1]] &, {n}]]]];

{a, b} = ({Denominator[#1], Numerator[#1]} &)[

p[{r, z}]] (* A195500, A195501 *)

Sqrt[a^2 + b^2] (* A195502 *)

CROSSREFS

Cf. A195501, A195502.

Sequence in context: A254157 A131493 A228871 * A099426 A332123 A100201

Adjacent sequences: A195497 A195498 A195499 * A195501 A195502 A195503

KEYWORD

nonn,frac

AUTHOR

Clark Kimberling, Sep 20 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 2 20:59 EST 2022. Contains 358510 sequences. (Running on oeis4.)