login
A190811
Increasing sequence generated by these rules: a(1)=1, and if x is in a then 2x+1 and 3x are in a.
3
1, 3, 7, 9, 15, 19, 21, 27, 31, 39, 43, 45, 55, 57, 63, 79, 81, 87, 91, 93, 111, 115, 117, 127, 129, 135, 159, 163, 165, 171, 175, 183, 187, 189, 223, 231, 235, 237, 243, 255, 259, 261, 271, 273, 279, 319, 327, 331, 333, 343, 345, 351, 367, 375, 379, 381, 387, 405, 447, 463, 471, 475, 477, 487, 489, 495, 511, 513, 519, 523, 525, 543
OFFSET
1,2
COMMENTS
See A190803.
LINKS
MATHEMATICA
h = 2; i = 1; j = 3; k = 0; f = 1; g = 9 ;
a = Union[Flatten[NestList[{h # + i, j # + k} &, f, g]]] (* A190811 *)
b = (a - 1)/2; c = a/3; r = Range[1, 300];
d = Intersection[b, r] (* A002977 *)
e = Intersection[c, r] (* A190857 *)
PROG
(Haskell)
import Data.Set (singleton, deleteFindMin, insert)
a190811 n = a190811_list !! (n-1)
a190811_list = f $ singleton 1
where f s = m : (f $ insert (2*m+1) $ insert (3*m) s')
where (m, s') = deleteFindMin s
-- Reinhard Zumkeller, Jun 01 2011
CROSSREFS
Cf. A190803.
Sequence in context: A292911 A119681 A197625 * A104177 A099204 A219608
KEYWORD
nonn
AUTHOR
Clark Kimberling, May 20 2011
STATUS
approved