The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A190814 Initial primes of 5 consecutive primes with consecutive gaps 2, 4, 6, 8. 11
 347, 1427, 2687, 4931, 13901, 21557, 23741, 27941, 28277, 31247, 32057, 33617, 45821, 55661, 55817, 68207, 68897, 91571, 128657, 128981, 167621, 179897, 193871, 205421, 221717, 234191, 239231, 258107, 258611, 259157, 278807, 302831, 305477, 348431, 354371 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS All terms = {11,17} mod 30. a(n) + 20 is the greatest term in the sequence of 5 consecutive primes with 4 consecutive gaps 2, 4, 6, 8. - Muniru A Asiru, Aug 03 2017 LINKS Zak Seidov, Table of n, a(n) for n = 1..2000 EXAMPLE Prime(69..73) = {347, 349, 353, 359, 367} and 349 - 347 = 2, 353 - 349 = 4, 359 - 353 = 6, 367 - 359 = 8. MAPLE N:= 10^6: # to get all terms <= N Primes:= select(isprime, [seq(i, i=3..N+20, 2)]): Primes[select(t -> [Primes[t+1]-Primes[t], Primes[t+2]-Primes[t+1], Primes[t+3]-Primes[t+2], Primes[t+4]-Primes[t+3]] = [2, 4, 6, 8], [\$1..nops(Primes)-4])]; # Robert Israel, Aug 03 2017 MATHEMATICA d = Differences[Prime[Range[100000]]]; Prime[Flatten[Position[Partition[d, 4, 1], {2, 4, 6, 8}]]] (* T. D. Noe, May 23 2011 *) Select[Partition[Prime[Range[31000]], 5, 1], Differences[#]=={2, 4, 6, 8}&][[All, 1]] (* Harvey P. Dale, Jul 03 2020 *) CROSSREFS Subsequence of A190799, also subsequence of A078847. Cf. A190792, A190817, A190819, A190838. Sequence in context: A210363 A054823 A142369 * A012868 A226669 A226665 Adjacent sequences:  A190811 A190812 A190813 * A190815 A190816 A190817 KEYWORD nonn AUTHOR Zak Seidov, May 20 2011 EXTENSIONS Additional cross references from Harvey P. Dale, May 10 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 24 18:07 EST 2021. Contains 340411 sequences. (Running on oeis4.)