OFFSET
1,2
COMMENTS
This sequence represents a class of sequences generated by rules of the form "a(1)=1, and if x is in a then hx+i and jx+k are in a, where h,i,j,k are integers." If m>1, at least one of the numbers b(m)=(a(m)-i)/h and c(m)=(a(m)-k)/j is in the set N of natural numbers. Let d(n) be the n-th b(m) in N, and let e(n) be the n-th c(m) in N. Note that a is a subsequence of both d and e.
Examples, where [A......] indicates a conjecture:
...
...
...
LINKS
Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
David Garth and Adam Gouge, Affinely Self-Generating Sets and Morphisms, Journal of Integer Sequences, 10 (2007) 1-13.
EXAMPLE
1 -> 2 -> 3,5 -> 8,9,14 -> 15,17,23,26,27,41 -> ...
MATHEMATICA
h = 2; i = -1; j = 3; k = -1; f = 1; g = 10;
a = Union[Flatten[NestList[{h # + i, j # + k} &, f, g]]] (* A190803 *)
b = (a + 1)/2; c = (a + 1)/3; r = Range[1, 300];
d = Intersection[b, r] (* A190841 *)
e = Intersection[c, r] (* A190842 *)
(* Regarding this program - useful for many choices of h, i, j, k, f, g - the depth g must be chosen with care - that is, large enough. Assuming that h<=j, the least new terms in successive nests a are typically iterates of hx+i, starting from x=1. If, for example, h=2 and i=0, the least terms are 2, 4, 8, ..., 2^g, so that g>=9 ensures inclusion of all the desired terms <=256. *)
PROG
(Haskell)
import Data.Set (singleton, deleteFindMin, insert)
a190803 n = a190803_list !! (n-1)
a190803_list = 1 : f (singleton 2)
where f s = m : (f $ insert (2*m-1) $ insert (3*m-1) s')
where (m, s') = deleteFindMin s
-- Reinhard Zumkeller, Jun 01 2011
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, May 25 2011
EXTENSIONS
a(34)=225 inserted by Reinhard Zumkeller, Jun 01 2011
STATUS
approved