login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A002977 Klarner-Rado sequence: a(1) = 1; subsequent terms are defined by the rule that if m is present so are 2m+1 and 3m+1.
(Formerly M2335)
20
1, 3, 4, 7, 9, 10, 13, 15, 19, 21, 22, 27, 28, 31, 39, 40, 43, 45, 46, 55, 57, 58, 63, 64, 67, 79, 81, 82, 85, 87, 91, 93, 94, 111, 115, 117, 118, 121, 127, 129, 130, 135, 136, 139, 159, 163, 165, 166, 171, 172, 175, 183, 187, 189, 190, 193, 202, 223, 231, 235, 237 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Complement of A132142: A132138(a(n)) = 1; for all terms m there exists at least one x such that A132140(x)=m. - Reinhard Zumkeller, Aug 20 2007

a(n+1) = A007448(a(n)); giving also the record values of A007448 and their positions. - Reinhard Zumkeller, Jul 14 2010

REFERENCES

M. L. Fredman and D. E. Knuth, Recurrence relations based on minimization, Abstract 71T-B234, Notices Amer. Math. Soc., 18 (1971), 960.

R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 78.

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence)

N. Wirth, Systematisches Programmieren, 1975, exercise 15.12.

LINKS

R. Zumkeller, Table of n, a(n) for n = 1..10000

Benoit Cloitre, Graph of initial terms

J. C. Lagarias, Erdős, Klarner and the 3x+ 1 Problem, Amer. Math. Monthly 123 (No. 8, 2016), 753-776.

Remco Niemeijer, Wirth Problem 15.12, Bonsai Code

FORMULA

It seems that limit as n->infinity of log(A002977(n))/log(n) = C = 1.3.. and probably A002977(n) is asymptotic to u*n^C with u=1.0... - Benoit Cloitre, Nov 06 2002

Limit as n->infinity of log(A002977(n))/log(n) = C = 1.269220905243564855888589424556..., and limit as n->infinity of A002977(n)/n^C = u = 1.335... - Yi Yang, Jul 23 2011, Aug 21 2017

EXAMPLE

a(10)=21=2*(3*(2*1+1)+1)+1: A132139(A132140(10))=A132139(43)=21;

a(14)=31=3*(3*(2*1+1)+1)+1=2*(2*(2*(2*1+1)+1)+1)+1: A132139(A132140(14))=A132139(52)=31 and A132139(A132140(16))=A132139(121)=31.

MATHEMATICA

Union[ Flatten[ NestList[{2# + 1, 3# + 1} &, 1, 6]]] (* Robert G. Wilson v, May 11 2005 *)

PROG

(Haskell)

import Data.Set

a002977 n = a002977_list !! (n-1)

a002977_list = f $ singleton 1 where

   f :: Set Integer -> [Integer]

   f s = m : (f $ insert (3*m+1) $ insert (2*m+1) s') where

        (m, s') = deleteFindMin s

-- Reinhard Zumkeller, Feb 10 2011

(Haskell) See Niemeijer link.

import Data.List.Ordered (union)

a002977_list = 1 : union

   (map ((+1) . (*2)) a002977_list) (map ((+1) . (*3)) a002977_list)

-- Reinhard Zumkeller, Nov 12 2014

(PARI) list(lim)=my(u=List(), v=List([1]), t, sz); while(#v, listput(u, v[1]); t=2*v[1]+1; if(t>lim, listpop(v, 1); next); listput(v, t); t=3*v[1]+1; listpop(v, 1); if(t<=lim, listput(v, t)); if(#v>sz, u=Set(u); v=List(setminus(Set(v), u)); u=List(u); sz=2*#v)); Set(u) \\ Charles R Greathouse IV, Aug 21 2017

CROSSREFS

Cf. A007448, A058361, A076291, A077477.

See A276786 for multi-set version.

Sequence in context: A005098 A185661 A276786 * A024799 A240531 A212013

Adjacent sequences:  A002974 A002975 A002976 * A002978 A002979 A002980

KEYWORD

easy,nonn,nice

AUTHOR

N. J. A. Sloane

EXTENSIONS

More terms from Ray Chandler, Sep 06 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 15 04:00 EST 2018. Contains 317225 sequences. (Running on oeis4.)