login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A179689
Numbers with prime signature {7,2}, i.e., of form p^7*q^2 with p and q prime.
7
1152, 3200, 6272, 8748, 15488, 21632, 36992, 46208, 54675, 67712, 107163, 107648, 123008, 175232, 215168, 236672, 264627, 282752, 312500, 359552, 369603, 445568, 476288, 574592, 632043, 645248, 682112, 703125, 789507, 798848, 881792, 1013888
OFFSET
1,1
FORMULA
Sum_{n>=1} 1/a(n) = P(2)*P(7) - P(9) = A085548 * A085967 - A085969 = 0.001741..., where P is the prime zeta function. - Amiram Eldar, Jul 06 2020
MAPLE
a:= proc(n) option remember; local k;
for k from 1+ `if` (n=1, 1, a(n-1))
while sort (map (x-> x[2], ifactors(k)[2]), `>`)<>[7, 2]
do od; k
end:
seq (a(n), n=1..32); # Alois P. Heinz, Jan 23 2011
MATHEMATICA
f[n_]:=Sort[Last/@FactorInteger[n]]=={2, 7}; Select[Range[10^6], f]
PROG
(PARI) list(lim)=my(v=List(), t); forprime(p=2, (lim\4)^(1/7), t=p^7; forprime(q=2, sqrt(lim\t), if(p==q, next); listput(v, t*q^2))); vecsort(Vec(v)) \\ Charles R Greathouse IV, Jul 20 2011
KEYWORD
nonn
AUTHOR
EXTENSIONS
Title edited by Daniel Forgues, Jan 22 2011
STATUS
approved