login
A179686
Let m > k > 0 be odd numbers and operations "m<+>k" and "m<->k" be defined as in A179382 and A179480. Then the sequence m<+>k, m<->(m<+>k), m<+>(m<->(m<+>k)), ... is periodic; a(n) is its smallest period starting from the seeds m=2*n-1 and k=1.
6
1, 2, 4, 2, 2, 2, 4, 2, 6, 4, 4, 6, 8, 6, 4, 2, 4, 10, 4, 6, 2, 4, 12, 12, 4, 14, 12, 2, 14, 14, 4, 2, 18, 12, 16, 4, 8, 16, 16, 14, 18, 4, 12, 4, 4, 4, 20, 10, 6, 22, 24, 4, 26, 6, 16, 6, 20, 4, 12, 26, 8, 22, 4, 2, 34, 8, 20, 14, 34, 24, 32, 6, 20, 42, 4, 12, 8, 10, 24
OFFSET
2,2
EXAMPLE
If n=4, 2*n-1=7, then we have 7<+>1=1, 7<->1=3, 7<+>3=5, 7<->5=1. Thus a(4)=4.
MAPLE
pidx := proc(L, n, m)
for i from 1 to nops(L)-1 do
if [op(i..i+1, L)] = [n, m] then
return i;
end if;
end do:
return -1 ;
end proc:
A179686aux := proc(x, y) local xtrack, xitr, p;
xtrack := [A000265(x+y)] ;
while true do
if type(nops(xtrack), 'odd') then
xitr := A000265(x-op(-1, xtrack)) ;
else
xitr := A000265(x+op(-1, xtrack)) ;
end if;
xtrack := [op(xtrack), xitr] ;
p := pidx(xtrack, op(-2, xtrack), op(-1, xtrack)) ;
if p >=1 and p < nops(xtrack) -2 then
return nops(xtrack)-p-1 ;
end if;
end do:
end proc:
A179686 := proc(n)
if n = 2 then
1;
else
A179686aux(2*n-1, 1) ;
end if;
end proc:
seq(A179686(n), n=2..80) ; # R. J. Mathar, Dec 04 2011
CROSSREFS
Sequence in context: A072865 A364002 A322728 * A286479 A013604 A218217
KEYWORD
nonn
AUTHOR
Vladimir Shevelev, Jul 24 2010
EXTENSIONS
Extended beyond a(24) by R. J. Mathar, Dec 04 2011
STATUS
approved