login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A065036 Product of the cube of a prime (A030078) and a different prime. 27
24, 40, 54, 56, 88, 104, 135, 136, 152, 184, 189, 232, 248, 250, 296, 297, 328, 344, 351, 375, 376, 424, 459, 472, 488, 513, 536, 568, 584, 621, 632, 664, 686, 712, 776, 783, 808, 824, 837, 856, 872, 875, 904, 999, 1016, 1029, 1048, 1096, 1107, 1112 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

This sequence appears on row 8 of the list illustrated in A064839 and is similar to A054753 which appears on row 6. Previous rows are generated by A000007, A000040, A001248, A006881, A030078 respectively.

Or, the numbers n such that 20=number of perfect partitions of n. - Juri-Stepan Gerasimov, Sep 26 2009

A089233(a(n)) = 3. - Reinhard Zumkeller, Sep 04 2013

LINKS

T. D. Noe, Table of n, a(n) for n = 1..1000

Index to sequences related to prime signature

FORMULA

A002033(a(n)) = 20. - Juri-Stepan Gerasimov, Sep 26 2009

Solutions of the equation tau(n^3)=5*tau(n). - Paolo P. Lava, Mar 15 2013

A000005(a(n)) = 8. - Altug Alkan, Nov 11 2015

EXAMPLE

a(4)= 56 since 56 = 2*2*2*7.

MAPLE

with(numtheory);

A065036:=proc(q) local n;

for n from 1 to q do if tau(n^3)=5*tau(n) then print(n); fi; od; end:

A065036(10^10);  # Paolo P. Lava, Mar 15 2013

MATHEMATICA

Select[ Range[1500], Sort[ Transpose[ FactorInteger[ # ]] [[2]]] == {1, 3} & ]

Module[{upto=1200}, Select[(Union[Flatten[{#[[1]]^3 #[[2]], #[[1]]#[[2]]^3}&/@Subsets[Prime[Range[upto/8]], {2}]]]), #<=upto&]] (* Harvey P. Dale, May 23 2015 *)

PROG

(PARI) list(lim)=my(v=List(), t); forprime(p=2, (lim\2)^(1/3), t=p^3; forprime(q=2, lim\t, if(p==q, next); listput(v, t*q))); vecsort(Vec(v)) \\ Charles R Greathouse IV, Jul 20 2011

(PARI) is(n)=my(f=factor(n)[, 2]); f==[3, 1]~||f==[1, 3]~ \\ Charles R Greathouse IV, Oct 15 2015

CROSSREFS

Cf. A000007, A000040, A001248, A002033, A006881, A030078, A054753, A064839.

Sequence in context: A048104 A297401 A065127 * A303359 A043119 A039296

Adjacent sequences:  A065033 A065034 A065035 * A065037 A065038 A065039

KEYWORD

easy,nonn

AUTHOR

Alford Arnold, Nov 04 2001

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 14 16:58 EST 2018. Contains 318100 sequences. (Running on oeis4.)