

A065036


Product of the cube of a prime (A030078) and a different prime.


32



24, 40, 54, 56, 88, 104, 135, 136, 152, 184, 189, 232, 248, 250, 296, 297, 328, 344, 351, 375, 376, 424, 459, 472, 488, 513, 536, 568, 584, 621, 632, 664, 686, 712, 776, 783, 808, 824, 837, 856, 872, 875, 904, 999, 1016, 1029, 1048, 1096, 1107, 1112
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

This sequence appears on row 8 of the list illustrated in A064839 and is similar to A054753 which appears on row 6. Previous rows are generated by A000007, A000040, A001248, A006881, A030078 respectively.
Or, the numbers n such that 20=number of perfect partitions of n. [From JuriStepan Gerasimov, Sep 26 2009]
A089233(a(n)) = 3.  Reinhard Zumkeller, Sep 04 2013


LINKS

T. D. Noe, Table of n, a(n) for n = 1..1000


FORMULA

A002033(a(n))=20. [From JuriStepan Gerasimov, Sep 26 2009]
Solutions of the equation tau(n^3)=5*tau(n).  Paolo P. Lava, Mar 15 2013


EXAMPLE

a(4)= 56 since 56 = 2*2*2*7.


MAPLE

with(numtheory);
A065036:=proc(q) local n;
for n from 1 to q do if tau(n^3)=5*tau(n) then print(n); fi; od; end:
A065036(10^10); # Paolo P. Lava, Mar 15 2013


MATHEMATICA

Select[ Range[1500], Sort[ Transpose[ FactorInteger[ # ]] [[2]]] == {1, 3} & ]


PROG

(PARI) list(lim)=my(v=List(), t); forprime(p=2, (lim\2)^(1/3), t=p^3; forprime(q=2, lim\t, if(p==q, next); listput(v, t*q))); vecsort(Vec(v)) \\ Charles R Greathouse IV, Jul 20 2011


CROSSREFS

Cf. A000007, A000040, A001248, A002033, A006881, A030078, A054753 and A064839
Sequence in context: A062374 A048104 A065127 * A043119 A039296 A043899
Adjacent sequences: A065033 A065034 A065035 * A065037 A065038 A065039


KEYWORD

easy,nonn


AUTHOR

Alford Arnold, Nov 04 2001


EXTENSIONS

More terms from Robert G. Wilson v, Nov 05 2001


STATUS

approved



