login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A179646
Product of the 5th power of a prime and different distinct prime of the 2nd power (p^5*q^2).
14
288, 800, 972, 1568, 3872, 5408, 6075, 9248, 11552, 11907, 12500, 16928, 26912, 28125, 29403, 30752, 41067, 43808, 53792, 59168, 67228, 70227, 70688, 87723, 89888, 111392, 119072, 128547, 143648, 151263, 153125, 161312, 170528, 199712
OFFSET
1,1
COMMENTS
288=2^5*3^2, 800=2^5*5^2,..
FORMULA
Sum_{n>=1} 1/a(n) = P(2)*P(5) - P(7) = A085548 * A085965 - A085967 = 0.007886..., where P is the prime zeta function. - Amiram Eldar, Jul 06 2020
MATHEMATICA
f[n_]:=Sort[Last/@FactorInteger[n]]=={2, 5}; Select[Range[200000], f]
PROG
(PARI) list(lim)=my(v=List(), t); forprime(p=2, (lim\4)^(1/5), t=p^5; forprime(q=2, sqrt(lim\t), if(p==q, next); listput(v, t*q^2))); vecsort(Vec(v)) \\ Charles R Greathouse IV, Jul 20 2011
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved