login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A179648 Expansion of (1/(1+4x-2x^2))*c(x/(1+4x-2x^2)), c(x) the g.f. of A000108. 1
1, -3, 12, -47, 190, -778, 3224, -13475, 56710, -239986, 1020200, -4353430, 18636908, -80004388, 344264624, -1484499811, 6413133638, -27750688914, 120258432264, -521833284514, 2267084792708, -9859984425324, 42925569027408 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Hankel transform is the (4,5) Somos-4 sequence A174404.

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1540

FORMULA

G.f.: (1/(2*x))*(1-sqrt((1-2*x^2)/(1+4*x-2*x^2))) = (sqrt(2*x^2-4*x-1)-sqrt(2*x^2-1))/(2*x*sqrt(2*x^2-4*x-1));

G.f.: 1/(1+4x-2x^2-x/(1-x/(1+4x-2x^2-x/(1-x/(1+4x-2x^2-x/(1-x/(1-... (continued fraction).

Conjecture: (n+1)*a(n) +2*(2n+1)*a(n-1) +4*(1-n)*a(n-2) +4*(5-2n)*a(n-3) +4*(n-3)*a(n-4)=0. - R. J. Mathar, Nov 17 2011

a(n) ~ (-1)^n * (2 + sqrt(6))^(n+1) / (2^(3/4) * 3^(1/4) * sqrt(Pi*n)). - Vaclav Kotesovec, Aug 15 2018

MATHEMATICA

CoefficientList[Series[(1/(2*x))*(1 - Sqrt[(1-2*x^2)/(1+4*x-2*x^2)]), {x, 0, 50}], x] (* G. C. Greubel, Aug 14 2018 *)

PROG

(PARI) x='x+O('x^50); Vec((1/(2*x))*(1-sqrt((1-2*x^2)/(1+4*x-2*x^2)))) \\ G. C. Greubel, Aug 14 2018

(MAGMA) m:=50; R<x>:=PowerSeriesRing(Rationals(), m); Coefficients(R!((1/(2*x))*(1-Sqrt((1-2*x^2)/(1+4*x-2*x^2))))); // G. C. Greubel, Aug 14 2018

CROSSREFS

Cf. A000108, A174404.

Sequence in context: A077829 A088132 A122450 * A258788 A100389 A151163

Adjacent sequences:  A179645 A179646 A179647 * A179649 A179650 A179651

KEYWORD

sign,easy

AUTHOR

Paul Barry, Jan 09 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 25 14:21 EST 2020. Contains 338624 sequences. (Running on oeis4.)