The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A179648 Expansion of (1/(1+4x-2x^2))*c(x/(1+4x-2x^2)), c(x) the g.f. of A000108. 1
 1, -3, 12, -47, 190, -778, 3224, -13475, 56710, -239986, 1020200, -4353430, 18636908, -80004388, 344264624, -1484499811, 6413133638, -27750688914, 120258432264, -521833284514, 2267084792708, -9859984425324, 42925569027408 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Hankel transform is the (4,5) Somos-4 sequence A174404. LINKS G. C. Greubel, Table of n, a(n) for n = 0..1540 FORMULA G.f.: (1/(2*x))*(1-sqrt((1-2*x^2)/(1+4*x-2*x^2))) = (sqrt(2*x^2-4*x-1)-sqrt(2*x^2-1))/(2*x*sqrt(2*x^2-4*x-1)); G.f.: 1/(1+4x-2x^2-x/(1-x/(1+4x-2x^2-x/(1-x/(1+4x-2x^2-x/(1-x/(1-... (continued fraction). Conjecture: (n+1)*a(n) +2*(2n+1)*a(n-1) +4*(1-n)*a(n-2) +4*(5-2n)*a(n-3) +4*(n-3)*a(n-4)=0. - R. J. Mathar, Nov 17 2011 a(n) ~ (-1)^n * (2 + sqrt(6))^(n+1) / (2^(3/4) * 3^(1/4) * sqrt(Pi*n)). - Vaclav Kotesovec, Aug 15 2018 MATHEMATICA CoefficientList[Series[(1/(2*x))*(1 - Sqrt[(1-2*x^2)/(1+4*x-2*x^2)]), {x, 0, 50}], x] (* G. C. Greubel, Aug 14 2018 *) PROG (PARI) x='x+O('x^50); Vec((1/(2*x))*(1-sqrt((1-2*x^2)/(1+4*x-2*x^2)))) \\ G. C. Greubel, Aug 14 2018 (MAGMA) m:=50; R:=PowerSeriesRing(Rationals(), m); Coefficients(R!((1/(2*x))*(1-Sqrt((1-2*x^2)/(1+4*x-2*x^2))))); // G. C. Greubel, Aug 14 2018 CROSSREFS Cf. A000108, A174404. Sequence in context: A077829 A088132 A122450 * A258788 A100389 A151163 Adjacent sequences:  A179645 A179646 A179647 * A179649 A179650 A179651 KEYWORD sign,easy AUTHOR Paul Barry, Jan 09 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 25 14:21 EST 2020. Contains 338624 sequences. (Running on oeis4.)