login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A177216
Numbers k that are the products of two distinct primes such that 2*k-1, 4*k-3, 8*k-7, 16*k-15, 32*k-31, 64*k-63 and 128*k-127 are also products of two distinct primes.
5
11293, 12139, 25399, 31261, 36199, 44869, 49471, 62521, 72397, 83086, 89737, 91705, 98941, 124846, 125041, 134023, 138994, 144793, 164041, 166171, 170431, 173311, 182527, 199543, 224962, 244294, 258169, 259891, 263086, 275281, 277987
OFFSET
1,1
EXAMPLE
11293 is a term because 11293 = 23*491, 2*11293 - 1 = 22585 = 5*4517, 4*11293 - 1 = 45169 = 17*2657, 8*11293 - 1 = 90337 = 13*6949, 16*11293 - 1 = 180673 = 79*2287, 32*11293 - 1 = 361345 = 5*72269, 64*11293 - 1 = 722689 = 11*65699, and 128*11293 - 1 = 1445377 = 193*7489.
MATHEMATICA
f[n_]:=Last/@FactorInteger[n]=={1, 1}; lst={}; Do[If[f[n]&&f[2*n-1]&&f[4*n-3]&&f[8*n-7]&&f[16*n-15]&&f[32*n-31]&&f[64*n-63]&&f[128*n-127], AppendTo[lst, n]], {n, 11293, 4*9!}]; lst
tdpQ[n_]:=Module[{f=Table[n*2^i-(2^i-1), {i, 0, 7}]}, And@@(Transpose[ FactorInteger[ #]][[2]]=={1, 1}&/@f)]; Select[Range[300000], tdpQ] (* Harvey P. Dale, Apr 02 2015 *)
KEYWORD
nonn
AUTHOR
EXTENSIONS
Example moved from Comments field to Example field by Harvey P. Dale, Apr 02 2015
STATUS
approved