

A104017


Devaraj numbers (A104016) which are not Carmichael numbers.


5



11305, 39865, 96985, 401401, 464185, 786961, 1106785, 1296505, 1719601, 1993537, 2242513, 2615977, 2649361, 2722681, 3165961, 3181465, 3755521, 4168801, 4229601, 4483297, 4698001, 5034601, 5381265, 5910121, 5977153, 7177105
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Counterexamples to Devaraj's 2nd conjecture: A.K. Devaraj conjectured that these numbers are exactly Carmichael numbers. It was proved (see A104016 ) that every Carmichael number is indeed a Devaraj number, but the converse is not true. Devaraj numbers that are not Carmichael are listed here.
It is sufficient to scan only odd numbers (cf. A104016), which makes the computation of the list twice as fast. [M. F. Hasler, Apr 03 2009]


LINKS

Charles R Greathouse IV, Table of n, a(n) for n = 1..500


PROG

(PARI) { DNC() = for(n=2, 10^8, f=factorint(n); if(vecmax(f[, 2])>1, next); f=f[, 1]; r=length(f); if(r==1, next); Carmichael=1; d=f[1]1; p=1; for(i=1, r, d=gcd(d, f[i]1); p*=f[i]1; if((n1)%(f[i]1), Carmichael=0)); if( ((n1)^(r2)*d^2)%p==0 && !Carmichael, print1(" ", n)) ) }
(PARI) forstep( n=3, 10^7, 2, vecmax((f=factor(n))[, 2])>1 & next; #(f*=[1, 1]~)>1  next; gcd(f)^2*(n1)^(#f2) % prod(i=1, #f, f[i]) & next; for( i=1, #f, (n1)%f[i] & !print1(n", ") & break)) \\ M. F. Hasler, Apr 03 2009


CROSSREFS

Cf. A104016, A002997.
Sequence in context: A252859 A177216 A112441 * A228627 A178581 A178583
Adjacent sequences: A104014 A104015 A104016 * A104018 A104019 A104020


KEYWORD

nonn


AUTHOR

Max Alekseyev, Feb 25 2005


STATUS

approved



