login
A177215
Numbers k that are the products of two distinct primes such that 2*k-1, 4*k-3, 8*k-7, 16*k-15, 32*k-31 and 64*k-63 are also products of two distinct primes.
6
694, 3403, 4714, 5062, 5353, 7495, 11293, 12139, 13798, 14191, 19735, 21439, 22585, 24277, 25009, 25399, 26734, 26899, 31261, 32959, 35299, 36199, 44869, 48949, 49471, 50797, 58003, 60181, 62521, 70759, 72397, 73909, 75631, 79021, 83086
OFFSET
1,1
EXAMPLE
694 is a term because 694 = 2*347, 2*694 - 1 = 1387 = 19*73, 4*694 - 1 = 2773 = 47*59, 8*694 - 1 = 5545 = 5*1109, 16*694 - 1 = 11089 = 13*853, 32*694 - 1 = 22177 = 67*331, and 64*694 - 1 = 44353 = 17*3609.
MATHEMATICA
f[n_]:=Last/@FactorInteger[n]=={1, 1}; lst={}; Do[If[f[n]&&f[2*n-1]&&f[4*n-3]&&f[8*n-7]&&f[16*n-15]&&f[32*n-31]&&f[64*n-63], AppendTo[lst, n]], {n, 0, 9!}]; lst
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved