login
A317400
Positive integers that have exactly ten representations of the form 1 + p1 * (1 + p2* ... * (1 + p_j)...), where [p1, ..., p_j] is a (possibly empty) list of distinct primes.
2
11306, 13289, 13693, 16402, 16446, 16491, 16699, 17031, 17113, 17116, 17263, 17576, 18412, 18602, 19825, 20023, 20411, 21022, 21256, 21676, 21936, 22271, 22543, 22716, 22764, 23038, 23233, 23332, 23353, 23580, 23599, 23886, 24036, 24053, 24064, 24531, 24646
OFFSET
1,1
LINKS
FORMULA
A317241(a(n)) = 10.
MAPLE
b:= proc(n, s) option remember; local p, r; if n=1 then 1 else r:=0;
for p in numtheory[factorset](n-1) minus s while r<11
do r:= r+b((n-1)/p, s union {p}) od; `if`(r<11, r, 11)
fi
end:
a:= proc(n) option remember; local k; for k from
`if`(n=1, 1, 1+a(n-1)) while b(k, {})<>10 do od; k
end:
seq(a(n), n=1..100);
CROSSREFS
Column k=10 of A317390.
Cf. A317241.
Sequence in context: A177216 A112441 A104017 * A284814 A228627 A178581
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jul 27 2018
STATUS
approved