

A110375


Numbers n such that Maple 9.5, Maple 10, Maple 11 and Maple 12 give the wrong answers for the number of partitions of n.


2



11269, 11566, 12376, 12430, 12700, 12754, 15013, 17589, 17797, 18181, 18421, 18453, 18549, 18597, 18885, 18949, 18997, 20865, 21531, 21721, 21963, 22683, 23421, 23457, 23547, 23691, 23729, 23853, 24015, 24087, 24231, 24339, 24519, 24591, 24627, 24681, 24825, 24933, 25005, 25023, 25059, 25185, 25293, 27020
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Based on various postings on the Web, sent to N. J. A. Sloane by R. J. Mathar. Thanks to several correspondents who sent information about other versions of Maple.
Mathematica 6.0, DrScheme and pari2.3.3 all give the correct answers.
Ramanujan's congruence says that numbpart(5*k+4)==0 mod 5, so numbpart(11269)=...851==1 mod 5 can't be correct. [Robert Gerbicz, May 13 2008]


LINKS

Table of n, a(n) for n=1..44.
Author?, Concerning this sequence


EXAMPLE

From PARI, the correct answer:
numbpart(11269)
2311391772313039755144117876494556289590601993601099725578515191051551761\
80318215891795874905318274163248033071850
From Maple 11, incorrect:
combinat[numbpart](11269);
2311391772313039755144117876494556289590601993601099725578515191051551761\
80318215891795874905318274163248033071851
On the other hand, the old Maple 6 gives the correct answer.


CROSSREFS

Cf. A000041.
Sequence in context: A217125 A195654 A195649 * A252859 A177216 A112441
Adjacent sequences: A110372 A110373 A110374 * A110376 A110377 A110378


KEYWORD

nonn


AUTHOR

N. J. A. Sloane, May 13 2008


EXTENSIONS

More terms from R. J. Mathar, May 14 2008, based on a comparison of results from Maple 9 and PARI2.3.3.


STATUS

approved



