login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A176414
Expansion of (7+8*x)/(1+2*x).
2
7, -6, 12, -24, 48, -96, 192, -384, 768, -1536, 3072, -6144, 12288, -24576, 49152, -98304, 196608, -393216, 786432, -1572864, 3145728, -6291456, 12582912, -25165824, 50331648, -100663296, 201326592, -402653184, 805306368
OFFSET
0,1
COMMENTS
Inverse binomial transform of A176415.
FORMULA
a(n) = A110164(n+2) for n > 0.
a(n) = 3*(-2)^n = 3*A122803(n+1) for n > 0; a(0) = 7.
a(n) = -2*a(n-1) for n > 1; a(0) = 7, a(1) = -6.
a(n) = (-1)^n*A132477(n) = (-1)^n*A122391(n+3), n>1.
a(n) = (-1)^n*A111286(n+2) = (-1)^n*A098011(n+4) = (-1)^n*A091629(n) = (-1)^n*A087009(n+3) = (-1)^n*A082505(n+1) = (-1)^n*A042950(n+1) = (-1)^n*A007283(n) = (-1)^n*A003945(n+1), n>0. - R. J. Mathar, Dec 10 2010
E.g.f.: 4 + 3*exp(-2*x). - Alejandro J. Becerra Jr., Feb 15 2021
MATHEMATICA
Join[{7}, NestList[-2#&, -6, 40]] (* Harvey P. Dale, Jun 20 2020 *)
PROG
(PARI) {for(n=0, 29, print1(polcoeff((7+8*x)/(1+2*x)+x*O(x^n), n), ", "))}
(PARI) A176414(n)=3*(-2)^n+!n*4 \\ M. F. Hasler, Apr 19 2015
CROSSREFS
Cf. A176415, A110164 (essentially the same), A122803.
Sequence in context: A082121 A309622 A215338 * A297153 A363325 A259168
KEYWORD
sign,easy
AUTHOR
Klaus Brockhaus, Apr 17 2010
EXTENSIONS
Edited by M. F. Hasler, Apr 19 2015
STATUS
approved