login
A176414
Expansion of (7+8*x)/(1+2*x).
2
7, -6, 12, -24, 48, -96, 192, -384, 768, -1536, 3072, -6144, 12288, -24576, 49152, -98304, 196608, -393216, 786432, -1572864, 3145728, -6291456, 12582912, -25165824, 50331648, -100663296, 201326592, -402653184, 805306368
OFFSET
0,1
COMMENTS
Inverse binomial transform of A176415.
FORMULA
a(n) = A110164(n+2) for n > 0.
a(n) = 3*(-2)^n = 3*A122803(n+1) for n > 0; a(0) = 7.
a(n) = -2*a(n-1) for n > 1; a(0) = 7, a(1) = -6.
a(n) = (-1)^n*A132477(n) = (-1)^n*A122391(n+3), n>1.
a(n) = (-1)^n*A111286(n+2) = (-1)^n*A098011(n+4) = (-1)^n*A091629(n) = (-1)^n*A087009(n+3) = (-1)^n*A082505(n+1) = (-1)^n*A042950(n+1) = (-1)^n*A007283(n) = (-1)^n*A003945(n+1), n>0. - R. J. Mathar, Dec 10 2010
E.g.f.: 4 + 3*exp(-2*x). - Alejandro J. Becerra Jr., Feb 15 2021
MATHEMATICA
Join[{7}, NestList[-2#&, -6, 40]] (* Harvey P. Dale, Jun 20 2020 *)
PROG
(PARI) {for(n=0, 29, print1(polcoeff((7+8*x)/(1+2*x)+x*O(x^n), n), ", "))}
(PARI) A176414(n)=3*(-2)^n+!n*4 \\ M. F. Hasler, Apr 19 2015
CROSSREFS
Cf. A176415, A110164 (essentially the same), A122803.
Sequence in context: A082121 A309622 A215338 * A297153 A363325 A259168
KEYWORD
sign,easy
AUTHOR
Klaus Brockhaus, Apr 17 2010
EXTENSIONS
Edited by M. F. Hasler, Apr 19 2015
STATUS
approved