This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A176415 Periodic sequence: repeat 7,1. 3
 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS Interleaving of A010727 and A000012. Also continued fraction expansion of (7+sqrt(77))/2. Also decimal expansion of 71/99. a(n) = A010688(n+1). Essentially first differences of A047521. Binomial transform of A176414. Inverse binomial transform of 2*A020707 preceded by 7. Exp( Sum_{n >= 1} a(n)*x^n/n ) = 1 + x + 4*x^2 + 4*x^3 + 10*x^4 + 10*x^5 + ... is the o.g.f. for A058187. - Peter Bala, Mar 13 2015 LINKS Index entries for linear recurrences with constant coefficients, signature (0,1). FORMULA a(n) = 4+3*(-1)^n. a(n) = a(n-2) for n > 1; a(0) = 7, a(1) = 1. a(n) = -a(n-1)+8 for n > 0; a(0) = 7. a(n) = 7*((n+1) mod 2)+(n mod 2). G.f.: (7+x)/(1-x^2). Dirichglet g.f.: (1+6*2^(-s))*zeta(s). - R. J. Mathar, Apr 06 2011 MATHEMATICA PadRight[{}, 120, {7, 1}] (* Harvey P. Dale, Dec 30 2018 *) PROG (MAGMA) &cat[ [7, 1]: n in [0..52] ]; [ 4+3*(-1)^n: n in [0..104] ]; (PARI) a(n)=7-n%2*6 \\ Charles R Greathouse IV, Oct 28 2011 CROSSREFS Cf. A010727 (all 7's sequence), A000012 (all 1's sequence), A092290 (decimal expansion of (7+sqrt(77))/2), A010688 (repeat 1, 7), A047521 (congruent to 0 or 7 mod 8), A176414 (expansion of (7+8*x)/(1+2*x)), A020707 (2^(n+2)), A058187. Sequence in context: A296472 A171544 A010688 * A317846 A198219 A198580 Adjacent sequences:  A176412 A176413 A176414 * A176416 A176417 A176418 KEYWORD cofr,cons,easy,nonn,mult AUTHOR Klaus Brockhaus, Apr 17 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 18 19:00 EDT 2019. Contains 325144 sequences. (Running on oeis4.)