login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A110164 Expansion of (1-x^2)/(1+2x). 8
1, -2, 3, -6, 12, -24, 48, -96, 192, -384, 768, -1536, 3072, -6144, 12288, -24576, 49152, -98304, 196608, -393216, 786432, -1572864, 3145728, -6291456, 12582912, -25165824, 50331648, -100663296, 201326592, -402653184, 805306368, -1610612736, 3221225472 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Diagonal sums of Riordan array ((1-x)/(1+x),x/(1+x)^2), A110162.

The positive sequence with g.f. (1-x^2)/(1-2x) gives the row sums of the Riordan array (1+x,x/(1-x)). - Paul Barry, Jul 18 2005

The inverse g.f. is (1 + 2*x + x^2 + 2*x^3 + x^4 + 2*x^5 + x^6 + ...). - Gary W. Adamson, Jan 07 2011

In absolute value, essentially the same as A007283(n) = A003945(n+1) = A042950(n+1) = A082505(n+1) = A087009(n+3) = A091629(n) = A098011(n+4) = A111286(n+2). - M. F. Hasler, Apr 19 2015

LINKS

Table of n, a(n) for n=0..32.

Index entries for linear recurrences with constant coefficients, signature (-2).

FORMULA

a(n) = 3*(-2)^(n-2) = 3*A122803(n-2) for n >= 2. a(n) = -2 a(n-1) for n >= 3. - M. F. Hasler, Apr 19 2015

MATHEMATICA

CoefficientList[Series[(1 - x^2)/(1 + 2x), {x, 0, 33}], x] (* Robert G. Wilson v, Jul 08 2006 *)

PROG

(PARI) A110164(n)=if(n>1, 3*(-2)^(n-2), 1-3*n) \\ M. F. Hasler, Apr 19 2015

CROSSREFS

Cf. A098011, A122803.

Sequence in context: A251752 A251766 A098011 * A042950 A035055 A119559

Adjacent sequences:  A110161 A110162 A110163 * A110165 A110166 A110167

KEYWORD

easy,sign

AUTHOR

Paul Barry, Jul 14 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 17 22:33 EDT 2019. Contains 328134 sequences. (Running on oeis4.)