login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A042950 Row sums of the Lucas triangle A029635. 31
2, 3, 6, 12, 24, 48, 96, 192, 384, 768, 1536, 3072, 6144, 12288, 24576, 49152, 98304, 196608, 393216, 786432, 1572864, 3145728, 6291456, 12582912, 25165824, 50331648, 100663296, 201326592, 402653184, 805306368, 1610612736, 3221225472, 6442450944 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

Map a binary sequence b=[ b_1,...] to a binary sequence c=[ c_1,...] so that C = 1/Product((1-x^i)^c_i == 1+Sum b_i*x^i mod 2.

This produces 2 new sequences: d={i:c_i=1} and e=[ 1,e_1,... ] where C = 1 + Sum e_i*x^i.

This sequence is d when b=[ 0,1,1,1,1,...].

Number of rises after n+1 iterations of morphism A007413.

a(n) written in base 2: a(0) = 10, a(n) for n >= 1: 11, 110, 11000, 110000, ..., i.e.: 2 times 1, (n-1) times 0 (see A003953(n)). - Jaroslav Krizek, Aug 17 2009

Row sums of the Lucas triangle A029635. - Sergio Falcon, Mar 17 2014

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

S. Kitaev and T. Mansour, Counting the occurrences of generalized patterns in words generated by a morphism, arXiv:math/0210170 [math.CO], 2002.

FORMULA

G.f.: (2-x)/(1-2*x).

a(n) = 2*a(n-1), n > 1; a(0)=2, a(1)=3.

a(n) = A003945(n), for n > 0.

From Paul Barry, Dec 06 2004: (Start)

Binomial transform of 2, 1, 2, 1, 2, 1, ... = (3+(-1)^n)/2.

a(n) = (3*2^n + 0^n)/2. (End)

a(0) = 2, a(n) = 3*2^(n-1) = 2^n + 2^(n-1) for n >= 1. - Jaroslav Krizek, Aug 17 2009

a(n) = 2^(n+1) - 2^(n-1), for n > 0. - Ilya Gutkovskiy, Aug 08 2015

MATHEMATICA

Table[ Ceiling[3*2^(n - 1)], {n, 0, 32}] (* Robert G. Wilson v, Jul 08 2006 *)

a[0] = 2; a[1] = 3; a[n_] := 2a[n - 1]; Table[a[n], {n, 0, 32}] (* Robert G. Wilson v, Jul 08 2006 *)

f[s_] := Append[s, 1 + Plus @@ s]; Nest[f, {2}, 32] (* Robert G. Wilson v, Jul 08 2006 *)

CoefficientList[Series[(2 - x)/(1 - 2x), {x, 0, 32}], x] (* Robert G. Wilson v, Jul 08 2006 *)

PROG

(PARI) a(n)=ceil(3*2^(n-1))

(Magma) [2] cat [2^(n+1) - 2^(n-1): n in [1..40]]; // Vincenzo Librandi, Aug 08 2015

CROSSREFS

Cf. A007283.

Sequence in context: A251766 A098011 A110164 * A035055 A119559 A329675

Adjacent sequences: A042947 A042948 A042949 * A042951 A042952 A042953

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane and J. H. Conway

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 1 00:42 EST 2022. Contains 358453 sequences. (Running on oeis4.)