login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A042950 Row sums of the Lucas triangle A029635. 27
2, 3, 6, 12, 24, 48, 96, 192, 384, 768, 1536, 3072, 6144, 12288, 24576, 49152, 98304, 196608, 393216, 786432, 1572864, 3145728, 6291456, 12582912, 25165824, 50331648, 100663296, 201326592, 402653184, 805306368, 1610612736, 3221225472, 6442450944 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

Map a binary sequence b=[ b_1,... ] to a binary sequence c=[ c_1,... ] so that C=1/Product((1-x^i)^c_i == 1+Sum b_i*x^i mod 2.

This produces 2 new sequences: d={i:c_i=1} and e=[ 1,e_1,... ] where C=1+Sum e_i*x^i.

This sequence is d when b=[ 0,1,1,1,1,.. ].

Number of rises after n+1 iterations of morphism A007413.

a(n) written in base 2: a(0) = 10, a(n) for n >= 1: 11, 110, 11000, 110000, ..., i.e.: 2 times 1, (n-1) times 0 (see A003953(n)). - Jaroslav Krizek, Aug 17 2009

Row sums of the Lucas triangle A029635. - Sergio Falcon, Mar 17 2014

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

S. Kitaev and T. Mansour, Counting the occurrences of generalized patterns in words generated by a morphism, arXiv:math/0210170 [math.CO], 2002.

FORMULA

G.f.: (2-x)/(1-2*x).

a(n) = 2*a(n-1), n>1; a(0)=2, a(1)=3.

a(n) = A003945(n), for n>0.

Binomial transform of 2, 1, 2, 1, 2, 1...=(3+(-1)^n)/2. a(n)=(3*2^n+0^n)/2. - Paul Barry, Dec 06 2004

a(0) = 2, a(n) = 3*2^(n-1) = 2^n + 2^(n-1) for n >= 1. - Jaroslav Krizek, Aug 17 2009

a(n) = 2^(n+1) - 2^(n-1), for n >0. - Ilya Gutkovskiy, Aug 8 2015

MATHEMATICA

Table[ Ceiling[3*2^(n - 1)], {n, 0, 32}] (* Robert G. Wilson v, Jul 08 2006 *)

a[0] = 2; a[1] = 3; a[n_] := 2a[n - 1]; Table[a[n], {n, 0, 32}] (* Robert G. Wilson v, Jul 08 2006 *)

f[s_] := Append[s, 1 + Plus @@ s]; Nest[f, {2}, 32] (* Robert G. Wilson v, Jul 08 2006 *)

CoefficientList[Series[(2 - x)/(1 - 2x), {x, 0, 32}], x] (* Robert G. Wilson v, Jul 08 2006 *)

PROG

(PARI) a(n)=ceil(3*2^(n-1))

(MAGMA) [2] cat [2^(n+1) - 2^(n-1): n in [1..40]]; // Vincenzo Librandi, Aug 08 2015

CROSSREFS

Cf. A007283.

Sequence in context: A251766 A098011 A110164 * A035055 A119559 A045761

Adjacent sequences:  A042947 A042948 A042949 * A042951 A042952 A042953

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane and J. H. Conway

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 23 21:46 EST 2017. Contains 295141 sequences.