OFFSET
0,2
COMMENTS
Map a binary sequence b=[ b_1,... ] to a binary sequence c=[ c_1,... ] so that C=1/Product (1-x^i)^c_i == 1+Sum b_i*x^i (mod 2).
This produces 2 new sequences: d={i:c_i=1} and e=[ 1,e_1,... ] where C=1+Sum e_i*x^i.
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..302
PROG
(PARI) EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
upto(n)={my(u=vector(n, i, i<>2), v=vector(n)); for(n=1, #v, v[n]=(u[n] + EulerT(v[1..n])[n])%2); select(t->t, v, 1)} \\ Andrew Howroyd, May 03 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
Terms a(35) and beyond from Andrew Howroyd, May 03 2021
STATUS
approved