

A175495


Those positive integers n where n < 2^d(n), where d(n) = number of divisors of n.


13



1, 2, 3, 4, 6, 8, 10, 12, 14, 15, 16, 18, 20, 24, 28, 30, 32, 36, 40, 42, 44, 45, 48, 50, 52, 54, 56, 60, 63, 64, 66, 70, 72, 78, 80, 84, 88, 90, 96, 100, 102, 104, 105, 108, 110, 112, 114, 120, 126, 128, 130, 132, 135, 136, 138, 140, 144, 150, 152, 154, 156
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

After the initial 1 in this sequence, the first integer in this sequence but not in A034884 is 44.
This sequence gives those numbers n for which A175494(n) = 1.
All 52 terms of A034884 are also in A175495.  Zak Seidov, May 30 2010
All powers of 2 are members.  D. S. McNeil, May 30 2010
It follows from the WimanRamanujan theorem that, for every eps > 0 and n > n_0(eps), we have n > tau(n)^(log(log(n))/(log(2)+eps)). Therefore in particular A034884 is finite. On the other hand, for 0 < eps < log(2), it is known that there exist infinitely many numbers for which n < tau(n)^(log(log(n))/(log(2)eps)), that is, tau(n) > n^((log(2)eps)/log(log(n))) and 2^tau(n) > 2^(n^((log(2)eps)/log(log(n)))) >> n. In particular, A175495 is infinite.  Vladimir Shevelev, May 30 2010


REFERENCES

K. Prachar, Primzahlverteilung, SpringerVerlag, 1957, Ch. 1, Theorem 5.2.
S. Ramanujan, Highly composite numbers, Collected papers, Cambridge, 1927, 8586.
A. Wiman, Sur l'ordre de grandeur du nombre de diviseurs d'un entier, Arkiv Mat. Astr. och Fys., 3, no. 18 (1907), 19.


LINKS

T. D. Noe, Table of n, a(n) for n = 1..10000


MATHEMATICA

t = {}; n = 0; While[Length[t] < 100, n++; If[n < 2^DivisorSigma[0, n], AppendTo[t, n]]]; t (* T. D. Noe, May 14 2013 *)
Select[Range[200], #<2^DivisorSigma[0, #]&] (* Harvey P. Dale, Apr 24 2015 *)


PROG

(PARI) isok(n) = n < 2^numdiv(n); \\ Michel Marcus, Sep 09 2019


CROSSREFS

Cf. A175494, A034884.
Sequence in context: A066994 A081000 A064377 * A034884 A137291 A032954
Adjacent sequences: A175492 A175493 A175494 * A175496 A175497 A175498


KEYWORD

nonn


AUTHOR

Leroy Quet, May 30 2010


EXTENSIONS

More terms from Jon E. Schoenfield, Jun 13 2010


STATUS

approved



