OFFSET
1,1
COMMENTS
Related sequences:
Numbers m such that binomial(m,2) is a square: A055997;
Numbers m such that binomial(m,2) + 1 is a square: A006451 + 1;
Numbers m such that binomial(m,2) - 1 is a square: A072221 + 1;
Numbers m >= 3 such that binomial(m,3) is a square: {3, 4, 50} (Proved by A. J. Meyl in 1878);
Numbers m >= 4 such that binomial(m,4) + 1 is a square: {6, 7, 45, 55, ...};
Numbers m >= 7 such that binomial(m,7) + 1 is a square: {8, 10, 21, 143, ...}.
No additional terms up to 10 million. - Harvey P. Dale, Apr 04 2017
No additional terms up to 10 billion. - Jon E. Schoenfield, Mar 18 2022
No additional terms up to 1 trillion. The sequence is finite by Siegel's theorem on integral points. - David Radcliffe, Jan 01 2024
LINKS
Wikipedia, Tetrahedral number
MATHEMATICA
lst = {}; k = 3; While[k < 10^6, If[ IntegerQ@ Sqrt[ Binomial[k, 3] + 1], AppendTo[lst, k]]; k++ ]; lst (* Robert G. Wilson v, Jun 11 2010 *)
Select[Range[3, 14000], IntegerQ[Sqrt[Binomial[#, 3]+1]]&] (* Harvey P. Dale, Apr 04 2017 *)
PROG
(PARI) isok(m) = (m>=3) && issquare(binomial(m, 3)+1); \\ Michel Marcus, Mar 15 2022
(Python)
from sympy import binomial
from sympy.ntheory.primetest import is_square
for m in range(3, 10**6):
if is_square(binomial(m, 3)+1):
print(m) # Mohammed Yaseen, Mar 18 2022
CROSSREFS
KEYWORD
nonn,more,fini
AUTHOR
Ctibor O. Zizka, May 29 2010
STATUS
approved