login
A167892
a(n) = Sum_{k=1..n} Catalan(k)^2.
3
1, 5, 30, 226, 1990, 19414, 203455, 2248355, 25887399, 307993015, 3763786811, 47032778955, 598933188955, 7751562502555, 101741582076580, 1351906409905480, 18159677984049580, 246298405721739580, 3369517588450715680, 46457194476711692080
OFFSET
1,2
COMMENTS
CatalanNumber(k) = (2k)!/(k!*(k+1)!) = binomial(2k,k)/(k+1).
LINKS
Paul Barry, Jacobsthal Decompositions of Pascal's Triangle, Ternary Trees, and Alternating Sign Matrices, Journal of Integer Sequences, 19, 2016, #16.3.5.
Eric Weisstein's World of Mathematics, Catalan Number
FORMULA
a(n) = Sum_{k=1..n} Catalan(k)^2.
a(n) = Sum_{k=1..n} ((2k)!/(k!*(k+1)!))^2.
a(n) = Sum_{k=1..n} A000108(k)^2.
a(n) = Sum_{k=1..n} A001246(k).
a(n) = A094639(n) - 1.
G.f.: (Hypergeometric2F1(-1/2,-1/2,1,16*x) - 4*x - 1)/(4*x*(1 - x)). - Ilya Gutkovskiy, Jul 01 2016
MATHEMATICA
Array[n \[Function] Sum[CatalanNumber[k]^2, {k, 1, n}], 20] (* J. Mulder (jasper.mulder(AT)planet.nl), Jan 25 2010 *)
Accumulate[CatalanNumber[Range[1, 20]]^2] (* Vincenzo Librandi, Jul 01 2016 *)
PROG
(Magma) [&+[Catalan(i)^2: i in [1..n]]: n in [1..20]]; // Vincenzo Librandi, Jul 01 2016
KEYWORD
nonn
AUTHOR
Alexander Adamchuk, Nov 15 2009
EXTENSIONS
More terms from J. Mulder (jasper.mulder(AT)planet.nl), Jan 25 2010
STATUS
approved