This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A167889 a(n) = (-7*3^n+(-3)^n+6*4^n) / 42. 1
 0, 0, 1, 4, 25, 100, 481, 1924, 8425, 33700, 141361, 565444, 2320825, 9283300, 37664641, 150658564, 607417225, 2429668900, 9761722321, 39046889284, 156574977625, 626299910500, 2508686426401, 10034745705604, 40170363882025 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS This is the main sequence for the recurrence a(n) = 4*a(n-1) + 9*a(n-2) - 36*a(n-3) in the sense that the numerator of the g.f. contains only a power of x. LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (4,9,-36). FORMULA a(n+1) - 4*a(n) = 0 if n even, = A001019((n-1)/2) if n odd. G.f. x^2/( (3*x-1)*(3*x+1)*(4*x-1) ). - R. J. Mathar, Jul 04 2011 From G. C. Greubel, Jun 30 2016: (Start) a(n) = 4*a(n-1) + 9*a(n-2) - 36*a(n-3). E.g.f.: (1/42)*(exp(-3*x) - 7*exp(3*x) + 6*exp(4 x)). (End) MATHEMATICA LinearRecurrence[{4, 9, -36}, {0, 0, 1}, 100] (* or *) Table[(-7*3^n + (-3)^n + 6*4^n)/42, {n, 0, 50}] (* G. C. Greubel, Jun 30 2016 *) PROG (MAGMA) [(-7*3^n+(-3)^n+6*4^n) / 42: n in [0..30]]; // Vincenzo Librandi, Jul 01 2016 CROSSREFS Sequence in context: A152215 A231175 A082044 * A042651 A225692 A070764 Adjacent sequences:  A167886 A167887 A167888 * A167890 A167891 A167892 KEYWORD nonn,easy AUTHOR Paul Curtz, Nov 14 2009 EXTENSIONS More terms from Vincenzo Librandi, Apr 05 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 16 08:03 EDT 2018. Contains 316259 sequences. (Running on oeis4.)