login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A167894 G.f.: 1/(Sum_{k >= 0} k!*x^k). 3
1, -1, -1, -3, -13, -71, -461, -3447, -29093, -273343, -2829325, -31998903, -392743957, -5201061455, -73943424413, -1123596277863, -18176728317413, -311951144828863, -5661698774848621, -108355864447215063 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

Essentially the same as A003319, which is the main entry for these numbers. - N. J. A. Sloane, Jun 11 2013

REFERENCES

M. Kauers and P. Paule, The Concrete Tetrahedron, Springer 2011, p. 40.

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..400

FORMULA

a(n) = -Sum_{i=1}^{n-1} a(i)*(n-i)!, n>1, a(0)=0, a(1)=1. - Vladimir Kruchinin, Aug 09 2010

From Sergei N. Gladkovskii, Jun 24 2012, Oct 15 2012, Nov 18 2012, Dec 26 2012, Apr 25 2013, May 29 2013, Aug 08 2013, Nov 19 2013: (Start) Continued fractions:

G.f.: 1 - x/Q(0), where Q(k) = 1 - (k+1)*x/(1 - (k+2)*x/Q(k+1)).

G.f.: U(0) where U(k) =  1 - x*(k+1)/(1 - x*(k+1)/U(k+1)).

G.f.: 1/G(0) where G(k) = 1 + x*(2*k+1)/(1 - 2*x*(k+1)/(2*x*(k+1) + 1/G(k+1))).

G.f.: A(x) = 1 - x/G(0) where G(k) = 1 + (k+1)*x - x*(k+2)/G(k+1).

G.f.: x*Q(0), where Q(k) = 1/x - 1 - 2*k - (k+1)^2/Q(k+1).

G.f.: G(0)/2, where G(k) = 1 + 1/(1 - 1/(1 - 1/(2*x*(k+1)) + 1/G(k+1))).

G.f.: 2/Q(0), where Q(k) = 1 + 1/(1 - x*(k+1)/(x*(k+1) + 1/Q(k+1) )).

G.f.: conjecture: Q(0), where Q(k) = 1 + k*x - (k+1)*x/Q(k+1). (End)

MATHEMATICA

CoefficientList[Series[1/(Sum[k!*x^k, {k, 0, 25}]), {x, 0, 20}], x] (* G. C. Greubel, Jun 30 2016 *)

PROG

(Maxima) a(n):=if n=1 then 1 else -sum((n-i)!*a(i), i, 1, n-1); \\ Vladimir Kruchinin, Aug 09 2010

(Sage)

def A167894_list(len):

    R, C = [1], [1]+[0]*(len-1)

    for n in (1..len-1):

        for k in range(n, 0, -1):

            C[k] = C[k-1] * k

        C[0] = -sum(C[k] for k in (1..n))

        R.append(C[0])

    return R

print A167894_list(20) # Peter Luschny, Feb 19 2016

CROSSREFS

Cf. A003319, A158882.

Sequence in context: A122455 A126390 A272428 * A003319 A158882 A233824

Adjacent sequences:  A167891 A167892 A167893 * A167895 A167896 A167897

KEYWORD

sign

AUTHOR

Philippe Deléham, Nov 15 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified February 23 00:33 EST 2018. Contains 299473 sequences. (Running on oeis4.)