login
A166900
Triangle, read by rows, that transforms rows into diagonals in the table of coefficients of successive iterations of x+x^2 (cf. A122888).
9
1, 1, 1, 2, 4, 1, 9, 21, 9, 1, 64, 156, 84, 16, 1, 630, 1540, 935, 230, 25, 1, 7916, 19160, 12480, 3564, 510, 36, 1, 121023, 288813, 196623, 61845, 10465, 987, 49, 1, 2179556, 5123608, 3591560, 1207696, 228800, 25864, 1736, 64, 1, 45179508, 104657520
OFFSET
0,4
COMMENTS
Compare to the triangle A071207 that transforms rows into diagonals in the table of iterations of x/(1-x), where A071207(n,k) gives the number of labeled free trees with n vertices and k children of the root that have a label smaller than the label of the root. Does this triangle have a similar interpretation?
EXAMPLE
Triangle begins:
1;
1, 1;
2, 4, 1;
9, 21, 9, 1;
64, 156, 84, 16, 1;
630, 1540, 935, 230, 25, 1;
7916, 19160, 12480, 3564, 510, 36, 1;
121023, 288813, 196623, 61845, 10465, 987, 49, 1;
2179556, 5123608, 3591560, 1207696, 228800, 25864, 1736, 64, 1;
45179508, 104657520, 74847168, 26415840, 5426949, 695079, 56511, 2844, 81, 1;
1059312264, 2420186616, 1755406674, 642448632, 140247810, 19683060, 1830080, 112520, 4410, 100, 1; ...
Coefficients in self-compositions of (x+x^2) form table A122888:
1;
1, 1;
1, 2, 2, 1;
1, 3, 6, 9, 10, 8, 4, 1;
1, 4, 12, 30, 64, 118, 188, 258, 302, 298, 244, 162, 84, 32, 8, 1;
1, 5, 20, 70, 220, 630, 1656, 4014, 8994, 18654, 35832, 63750,...;
1, 6, 30, 135, 560, 2170, 7916, 27326, 89582, 279622, 832680,...; ...
This triangle T transforms rows of A122888 into diagonals of A122888;
the initial diagonals begin:
A112319: [1, 1, 2, 9, 64, 630, 7916, 121023, 2179556, 45179508, ...];
A112317: [1, 2, 6, 30, 220, 2170, 27076, 409836, 7303164, 149837028,..];
A112320: [1, 3, 12, 70, 560, 5810, 74760, 1153740, 20817588, 430604724, ...].
For example:
T * [1, 0, 0, 0, 0, 0, 0,...]~ = A112319;
T * [1, 1, 0, 0, 0, 0, 0,...]~ = A112317;
T * [1, 2, 2, 1, 0, 0, 0,...]~ = A112320.
PROG
(PARI) {T(n, k)=local(F=x, M, N, P, m=n); M=matrix(m+2, m+2, r, c, F=x; for(i=1, r+c-2, F=subst(F, x, x+x^2+x*O(x^(m+2)))); polcoeff(F, c)); N=matrix(m+1, m+1, r, c, F=x; for(i=1, r, F=subst(F, x, x+x^2+x*O(x^(m+2)))); polcoeff(F, c)); P=matrix(m+1, m+1, r, c, M[r+1, c]); (P~*N~^-1)[n+1, k+1]}
for(n=0, 10, for(k=0, n, print1(T(n, k), ", ")); print(""))
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Nov 27 2009
STATUS
approved