login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A208936 Prime production length of the polynomial P=x^2+x+prime(n): max { k>0 | P(x) is prime for all x=0,...,k-1 }. 2
1, 2, 4, 1, 10, 1, 16, 1, 1, 2, 1, 1, 40, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 4, 1, 3, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 3, 1, 2, 1, 1, 1, 4, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

a(n)>0 by definition, and a(n)>1 iff n is a twin prime; a(n) would be zero for composite n if "prime(n)" was replaced by n.

Euler's original "prime producing polynomial" was P=x^2-x+41; changing the sign increases the prime production length by 1.

LINKS

Robert Israel, Table of n, a(n) for n = 1..10000

Shaoji Xu, On Euler Polynomials and Rabinowitsch Polynomials, International Journal of Algebra, Vol. 6, 2012, no. 3, 123 - 134.

MAPLE

A208936:= proc(n) local N, r;

   N:= ithprime(n);

   for r from 1 do

     if not isprime(r^2+r+N) then return(r) end if

   end do

end proc; # Robert Israel, Feb 11 2013

PROG

(PARI) a(n)={n=prime(n); for( x=1, 1e9, isprime(x^2+x+n) | return(x))}

CROSSREFS

Sequence in context: A166900 A192437 A277256 * A102405 A271206 A211244

Adjacent sequences:  A208933 A208934 A208935 * A208937 A208938 A208939

KEYWORD

nonn

AUTHOR

M. F. Hasler, Mar 03 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 21 22:32 EST 2017. Contains 295054 sequences.