OFFSET
0,3
COMMENTS
An isoscent sequence of length n is an integer sequence [s(1),...,s(n)] with s(1) = 0 and 0 <= s(i) <= 1 plus the number of level steps in [s(1),...,s(i)].
Columns k=0-10 give: A001006, A243474, A243475, A243476, A243477, A243478, A243479, A243480, A243481, A243482, A243483.
Row sums give A000110.
Last elements of rows give A243484.
LINKS
Joerg Arndt and Alois P. Heinz, Rows n = 0..114, flattened
EXAMPLE
T(4,0) = 9: [0,0,0,0], [0,0,0,1], [0,0,0,2], [0,0,0,3], [0,0,1,1], [0,0,1,2], [0,0,2,2], [0,1,1,1], [0,1,1,2].
T(4,1) = 6: [0,0,1,0], [0,0,2,0], [0,0,2,1], [0,1,0,0], [0,1,0,1], [0,1,1,0].
T(5,2) = 2: [0,0,2,1,0], [0,1,0,1,0].
Triangle T(n,k) begins:
: 1;
: 1;
: 2;
: 4, 1;
: 9, 6;
: 21, 29, 2;
: 51, 124, 28;
: 127, 499, 241, 10;
: 323, 1933, 1667, 216, 1;
: 835, 7307, 10142, 2765, 98;
: 2188, 27166, 56748, 27214, 2637, 22;
MAPLE
b:= proc(n, i, t) option remember; `if`(n<1, 1, expand(add(
`if`(j<i, x, 1) *b(n-1, j, t+`if`(j=i, 1, 0)), j=0..t+1)))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n-1, 0$2)):
seq(T(n), n=0..15);
MATHEMATICA
b[n_, i_, t_] := b[n, i, t] = If[n<1, 1, Expand[Sum[If[j<i, x, 1]*b[n-1, j, t + If[j == i, 1, 0]], {j, 0, t+1}]]]; T[n_] := Function[{p}, Table[ Coefficient[ p, x, i], {i, 0, Exponent[p, x]}]][b[n-1, 0, 0]]; Table[T[n], {n, 0, 15}] // Flatten (* Jean-François Alcover, Feb 09 2015, after Maple *)
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Joerg Arndt and Alois P. Heinz, May 11 2014
STATUS
approved