The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A112317 Coefficients of x^n in the n-th iteration of (x + x^2) for n>=1. 15
 1, 2, 6, 30, 220, 2170, 27076, 409836, 7303164, 149837028, 3479498880, 90230486346, 2584679465160, 81056989408928, 2762187020749144, 101633218030586364, 4015771398425994048, 169588657820702174728 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Forms a diagonal of the tables A122888 and A185755. LINKS Paul D. Hanna and Vaclav Kotesovec, Table of n, a(n) for n = 1..300 (first 100 terms from Paul D. Hanna) FORMULA a(n) = [x^n] F_n(x) where F_n(x) = F_{n-1}(x+x^2) with F_1(x) = x+x^2. EXAMPLE The initial iterations of x + x^2 begin: F(x) = (1)*x + x^2; F(F(x)) = x + (2)*x^2 + 2*x^3 + x^4; F(F(F(x))) = x + 3*x^2 + (6)*x^3 + 9*x^4+ 10*x^5+ 8*x^6+ 4*x^7+ x^8; F(F(F(F(x)))) = x + 4*x^2 + 12*x^3 + (30)*x^4 + 64*x^5 +...; F(F(F(F(F(x))))) = x + 5*x^2 + 20*x^3 + 70*x^4 + (220)*x^5 +...; F(F(F(F(F(F(x)))))) = x + 6*x^2 + 30*x^3 + 135*x^4 + 560*x^5 + (2170)*x^6 +...; where the terms in parenthesis illustrate how to form this sequence. PROG (PARI) {a(n)=local(F=x+x^2, G=x+x*O(x^n)); if(n<1, 0, for(i=1, n, G=subst(F, x, G)); return(polcoeff(G, n, x)))} for(n=1, 30, print1(a(n), ", ")) CROSSREFS Cf. A112319, A112320, A122888, A185755, A135080, A166900. Sequence in context: A205569 A108204 A088160 * A089459 A027882 A306782 Adjacent sequences:  A112314 A112315 A112316 * A112318 A112319 A112320 KEYWORD nonn AUTHOR Paul D. Hanna, Sep 03 2005 EXTENSIONS Added cross-references and comments; name and example changed by Paul D. Hanna, Feb 04 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 18 20:41 EDT 2021. Contains 343089 sequences. (Running on oeis4.)