The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A164294 Primes prime(k) such that all integers in [(prime(k-1)+1)/2,(prime(k)-1)/2] are composite, excluding those primes in A080359. 25
 131, 151, 229, 233, 311, 571, 643, 727, 941, 1013, 1051, 1153, 1373, 1531, 1667, 1669, 1723, 1783, 1787, 1831, 1951, 1979, 2029, 2131, 2213, 2239, 2311, 2441, 2593, 2621, 2633, 2659, 2663, 2887, 3001, 3011, 3019, 3121, 3169, 3209, 3253, 3347, 3413, 3457 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS The primes of A080359 larger than 3 all have the property that the integers in the interval selected by halving the value of the preceding prime and halving their own value are all composite. This sequence here collects the primes that are not in A080359 but still share this property of the prime-free sub-interval. LINKS Jean-François Alcover, Table of n, a(n) for n = 1..1106 V. Shevelev, On critical small intervals containing primes, arXiv:0908.2319 [math.NT], 2009. [From Vladimir Shevelev, Aug 20 2009] V. Shevelev, Ramanujan and Labos primes, their generalizations, and classifications of primes, J. Integer Seq. 15 (2012) Article 12.5.4. FORMULA A164333 \ A080359. EXAMPLE For the prime 1531=A000040(242), the preceding prime is A000040(241)=1523, and the integers from (1523+1)/2 = 762 up to (1531-1)/2 = 765 are all composite, as they fall in the gap between A000040(135) and A000040(136). In addition, 1531 is not in A080359, which adds 1531 to this sequence here. MATHEMATICA maxPrime = 3500; kmax = PrimePi[maxPrime]; A164333 = Select[Table[{(Prime[k - 1] + 1)/2, (Prime[k] - 1)/2}, {k, 3, kmax}], AllTrue[Range[#[], #[]], CompositeQ] &][[All, 2]]*2 + 1; b = 2; b[n_] := b[n] = Module[{k = b[n - 1]}, While[(PrimePi[k] - PrimePi[Quotient[k, 2]]) != n, k++]; k]; A080359 = Reap[For[n = 1, b[n] <= maxPrime, n++, Sow[b[n]]]][[2, 1]]; Complement[A164333, A080359] (* Jean-François Alcover, Sep 14 2018 *) PROG (PARI) okprime(p) = { my(k = primepi(p)); for (i = (prime(k-1)+1)/2, (prime(k)-1)/2, if (isprime(i), return (0)); ); return (1); } lista(nn) = {vlp = readvec("b080359.txt"); forprime (p=2, nn, if (! vecsearch(vlp, p) && okprime(p), print1(p, ", ")); ); } \\ Michel Marcus, Jan 15 2014 CROSSREFS Cf. A080359, A104272, A164288, A001262, A001567, A062568, A141232, A164368. Sequence in context: A273049 A134951 A173071 * A155924 A270237 A090264 Adjacent sequences:  A164291 A164292 A164293 * A164295 A164296 A164297 KEYWORD nonn AUTHOR Vladimir Shevelev, Aug 12 2009 EXTENSIONS Extended beyond 571 by R. J. Mathar, Oct 02 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 13 13:33 EDT 2020. Contains 335688 sequences. (Running on oeis4.)