login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A141232
Overpseudoprimes to base 2: composite k such that k = A137576((k-1)/2).
27
2047, 3277, 4033, 8321, 65281, 80581, 85489, 88357, 104653, 130561, 220729, 253241, 256999, 280601, 390937, 458989, 486737, 514447, 580337, 818201, 838861, 877099, 916327, 976873, 1016801, 1082401, 1145257, 1194649, 1207361, 1251949, 1252697, 1325843
OFFSET
1,1
COMMENTS
Numbers are found by prime factorization of numbers from A001262 and a simple testing of the conditions indicated in comment to A141216.
All composite Mersenne numbers (A001348), Fermat numbers (A000215) and squares of Wieferich primes (A001220) are in this sequence. - Vladimir Shevelev, Jul 15 2008
C. Pomerance proved that this sequence is infinite (see Theorem 4 in the third reference). - Vladimir Shevelev, Oct 29 2011
Odd composite numbers k such that ord(2,k) * ((Sum_{d|k} phi(d)/ord(2,d)) - 1) = k-1, where phi = A000010 and ord(2,d) is the multiplicative order of 2 modulo d. - Jianing Song, Nov 13 2021
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..664 from Michel Marcus)
J. H. Castillo, G. García-Pulgarín and J. M. Velásquez-Soto, q-pseudoprimality: A natural generalization of strong pseudoprimality, arXiv:1412.5226 [math.NT], 2014.
Vladimir Shevelev, Overpseudoprimes, Mersenne Numbers and Wieferich primes, arXiv:0806.3412 [math.NT], 2008-2012.
Vladimir Shevelev, Process of "primoverization" of numbers of the form a^n-1, arXiv:0807.2332 [math.NT], 2008.
Vladimir Shevelev, On upper estimate for the overpseudoprime counting function, arXiv:0807.1975 [math.NT], 2008.
Vladimir Shevelev, G. Garcia-Pulgarin, J. M. Velasquez and J. H. Castillo, Overpseudoprimes, and Mersenne and Fermat Numbers as Primover Numbers, J. Integer Seq. 15 (2012) Article 12.7.7.
Vladimir Shevelev, G. Garcia-Pulgarin, J. M. Velasquez and J. H. Castillo, Overpseudoprimes, and Mersenne and Fermat numbers as primover numbers, arXiv:1206.0606 [math.NT], 2012.
FORMULA
Sum_{n:a(n)<=x} 1 <= x^(3/4)(1+o(1)).
MATHEMATICA
A137576[n_] := Module[{t}, (t = MultiplicativeOrder[2, 2 n + 1])* DivisorSum[2 n + 1, EulerPhi[#]/MultiplicativeOrder[2, #]&] - t + 1];
okQ[n_] := n > 1 && CompositeQ[n] && n == A137576[(n-1)/2];
Reap[For[k = 2, k < 2*10^6, k++, If[okQ[k], Print[k]; Sow[k]]]][[2, 1]] (* Jean-François Alcover, Jan 11 2019, from PARI *)
PROG
(PARI) f(n)=my(t); sumdiv(2*n+1, d, eulerphi(d)/(t=znorder(Mod(2, d))))*t-t+1; \\ A137576
isok(n) = (n>1) && !isprime(n) && (n == f((n-1)/2)); \\ Michel Marcus, Oct 05 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Vladimir Shevelev, Jun 16 2008
EXTENSIONS
Name edited by Michel Marcus, Oct 05 2018
STATUS
approved