login
A360184
Square array A(n, k) read by antidiagonals downwards: smallest base-n strong Fermat pseudoprime with k distinct prime factors for k, n >= 2.
2
2047, 15841, 703, 800605, 8911, 341, 293609485, 152551, 4371, 781, 10761055201, 41341321, 129921, 24211, 217, 5478598723585, 12283706701, 9224391, 4382191, 29341, 325, 713808066913201, 1064404682551, 2592053871, 381347461, 3405961, 58825, 65, 90614118359482705
OFFSET
2,1
COMMENTS
The array A(n, k) starts as follows:
k = 2 3 4 5 6
n = 2: 2047 15841 800605 293609485 10761055201
n = 3: 703 8911 152551 41341321 12283706701
n = 4: 341 4371 129921 9224391 2592053871
n = 5: 781 24211 4382191 381347461 9075517561
n = 6: 217 29341 3405961 557795161 333515107081
LINKS
PROG
(PARI)
strong_check(p, base, e, r) = my(tv=valuation(p-1, 2)); tv > e && Mod(base, p)^((p-1)>>(tv-e)) == r;
strong_fermat_psp(A, B, k, base) = A=max(A, vecprod(primes(k))); (f(m, l, lo, k, e, r) = my(list=List()); my(hi=sqrtnint(B\m, k)); if(lo > hi, return(list)); if(k==1, forstep(p=lift(1/Mod(m, l)), hi, l, if(isprimepower(p) && gcd(m*base, p) == 1 && strong_check(p, base, e, r), my(n=m*p); if(n >= A && (n-1) % znorder(Mod(base, p)) == 0, listput(list, n)))), forprime(p=lo, hi, base%p == 0 && next; strong_check(p, base, e, r) || next; my(z=znorder(Mod(base, p))); gcd(m, z) == 1 || next; my(q=p, v=m*p); while(v <= B, list=concat(list, f(v, lcm(l, z), p+1, k-1, e, r)); q *= p; Mod(base, q)^z == 1 || break; v *= p))); list); my(res=f(1, 1, 2, k, 0, 1)); for(v=0, logint(B, 2), res=concat(res, f(1, 1, 2, k, v, -1))); vecsort(Set(res));
T(n, k) = if(n < 2, return()); my(x=vecprod(primes(k)), y=2*x); while(1, my(v=strong_fermat_psp(x, y, k, n)); if(#v >= 1, return(v[1])); x=y+1; y=2*x);
print_table(n, k) = for(x=2, n, for(y=2, k, print1(T(x, y), ", ")); print(""));
for(k=2, 9, for(n=2, k, print1(T(n, k-n+2)", ")));
CROSSREFS
Cf. A001262, A180065 (row n=2), A271873.
Sequence in context: A141232 A367230 A361256 * A062568 A180065 A270697
KEYWORD
nonn,tabl
AUTHOR
Daniel Suteu, Mar 04 2023
STATUS
approved