The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A141216 a(n) = A137576((N-1)/2) - N, where N = A001567(n). 3
 30, 320, 224, 240, 72, 360, 728, 0, 672, 216, 1320, 0, 0, 16, 5060, 60, 126, 10560, 216, 0, 3360, 2574, 150, 5040, 2808, 3600, 3600, 232, 400, 420, 22, 2700, 2784, 224, 96, 70, 1640, 240, 9200, 3600, 2760, 58344, 616, 504, 102, 5600, 8064, 264, 11880, 1440, 7488, 252 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS The zero terms are of a special interest. Indeed, since for any odd prime p, A137576((p-1)/2)=p, then it is natural to call "overpseudoprimes" those Poulet pseudoprimes A001567(n) for which a(n)=0. Theorem. A squarefree composite number m = p_1*p_2*...*p_k is an overpseudoprime if and only if A002326((p_1-1)/2) = A002326((p_2-1)/2) = ... = A002326((p_k-1)/2). Moreover, every overpseudoprime is in A001262. Note that in A001262 there exist terms which are not squarefree. The first is A001262(52) = 1194649 = 1093^2. It can be shown that if an overpseudoprime is not a multiple of the square of a Wieferich prime (see A001220) then it is squarefree. Also all squares of Wieferich primes are overpseudoprimes. LINKS Amiram Eldar, Table of n, a(n) for n = 1..10000 V. Shevelev, Overpseudoprimes, Mersenne Numbers and Wieferich Primes, arxiv:0806.3412 [math.NT], 2008-2012. MATHEMATICA fppQ[n_]:=PowerMod[2, n, n]==2; f[n_] := (t = MultiplicativeOrder[2, 2n+1])*DivisorSum[2n+1, EulerPhi[#] / MultiplicativeOrder[2, #]&]-t+1; s={}; Do[If[fppQ[n] && CompositeQ[n], AppendTo[s, f[(n-1)/2 ]-n]], {n, 1, 10000}]; s (* Amiram Eldar, Dec 09 2018 after Jean-François Alcover at A137576 *) PROG (PARI) f(n) = my(t); sumdiv(2*n+1, d, eulerphi(d)/(t=znorder(Mod(2, d))))*t-t+1; \\ A137576 isfpp(n) = {Mod(2, n)^n==2 & !isprime(n) & n>1}; \\ A001567 lista(nn) = {for (n=1, nn, if (isfpp(n), print1(f((n-1)/2) - n, ", "); ); ); } \\ Michel Marcus, Dec 09 2018 CROSSREFS Cf. A137576, A001567, A001262, A002326, A006694. Sequence in context: A042750 A074994 A134287 * A159543 A227689 A006859 Adjacent sequences:  A141213 A141214 A141215 * A141217 A141218 A141219 KEYWORD nonn AUTHOR Vladimir Shevelev, Jun 14 2008, Jul 13 2008 EXTENSIONS More terms via b137576.txt from R. J. Mathar, Jun 12 2010 More terms from Michel Marcus, Dec 09 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 21 23:10 EDT 2020. Contains 337274 sequences. (Running on oeis4.)