|
|
A141234
|
|
Sequence of k such that starting with P(0)=11 then k(n)*P(n-1)*(k(n)*P(n-1)-1)-1 is the least prime = P(n).
|
|
2
|
|
|
|
OFFSET
|
1,2
|
|
LINKS
|
Table of n, a(n) for n=1..10.
|
|
EXAMPLE
|
1*11*(1*11-1)-1=109 is a prime so k(1)=1 P(1)=109.
|
|
PROG
|
(PARI) P=11; for(i=1, 20, k=0; while(!ispseudoprime(t=k++*P*(k*P-1)-1), ); P=t; print1(k", ")) \\ Michel Marcus, Sep 16 2019 ; after A141240
|
|
CROSSREFS
|
Cf. A141233, A141235, A141236, A141237, A141238, A141239, A141240.
Sequence in context: A165670 A221869 A237116 * A130180 A245288 A104587
Adjacent sequences: A141231 A141232 A141233 * A141235 A141236 A141237
|
|
KEYWORD
|
nonn,more
|
|
AUTHOR
|
Pierre CAMI, Jun 16 2008
|
|
EXTENSIONS
|
a(9) from Michel Marcus, Sep 17 2019
a(10) from Jinyuan Wang, Sep 17 2019
|
|
STATUS
|
approved
|
|
|
|