|
|
A164288
|
|
Members of A164368 which are not Ramanujan primes.
|
|
27
|
|
|
109, 137, 191, 197, 283, 521, 617, 683, 907, 991, 1033, 1117, 1319, 1493, 1619, 1627, 1697, 1741, 1747, 1801, 1931, 1949, 2011, 2111, 2143, 2153, 2293, 2417, 2539, 2543, 2549, 2591, 2621, 2837, 2927, 2953, 2969, 3079, 3119, 3187, 3203, 3329, 3389, 3407
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Every lesser of twin primes (A001359), beginning with 137, which is not in A104272, is in the sequence. [From Vladimir Shevelev, Aug 31 2009]
|
|
LINKS
|
Table of n, a(n) for n=1..44.
J. Sondow, J. W. Nicholson, and T. D. Noe, Ramanujan Primes: Bounds, Runs, Twins, and Gaps, arXiv:1105.2249 [math.NT], 2011; J. Integer Seq. 14 (2011) Article 11.6.2.
V. Shevelev, On critical small intervals containing primes, arXiv:0908.2319 [math.NT], 2009.
V. Shevelev, Ramanujan and Labos Primes, Their Generalizations, and Classifications of Primes, J. Int. Seq. 15 (2012) # 12.5.4.
|
|
FORMULA
|
A164368 \ A104272.
|
|
EXAMPLE
|
p=137 is the least lesser of twin primes which is not a Ramanujan prime. Therefore it is in the sequence. [From Vladimir Shevelev, Aug 31 2009]
|
|
MATHEMATICA
|
nn = 250;
A164368 = Select[Prime[Range[2 nn]], PrimePi[2 NextPrime[#/2]] != PrimePi[#]&];
Rama = Table[0, {nn}]; s = 0; Do[If[PrimeQ[k], s++]; If[PrimeQ[k/2], s--]; If[s < nn, Rama[[s+1]] = k], {k, Prime[3 nn]}];
A104272 = Rama+1;
Complement[A164368, A104272] (* Jean-François Alcover, Oct 27 2018, after T. D. Noe in A104272 *)
|
|
CROSSREFS
|
Cf. A104272, A001262, A001567, A062568, A141232.
Sequence in context: A253155 A095609 A046295 * A325074 A182476 A182451
Adjacent sequences: A164285 A164286 A164287 * A164289 A164290 A164291
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Vladimir Shevelev, Aug 12 2009
|
|
EXTENSIONS
|
I added 521. - Vladimir Shevelev, Aug 17 2009
Redefined in terms of A164368 and extended by R. J. Mathar, Aug 18 2009
|
|
STATUS
|
approved
|
|
|
|