login
A164295
Triangle T(n,k) read by rows: sum of the triangles A054521 and A051731.
1
2, 2, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 0, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 0, 1, 1, 2, 1, 1, 1, 1, 0, 1, 1, 1, 2, 1, 1, 0, 1, 0, 1, 0, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1
OFFSET
1,1
COMMENTS
Zeros in the table, for example T(6,4)=0, indicate that the row and column indices n and k are not coprime and in addition that there is a nonzero remainder n (mod k).
FORMULA
T(n,k) = A054521(n,k) + A051731(n,k), 1<=k<=n, 1<=n.
EXAMPLE
The table starts
2
2, 1
2, 1, 1
2, 1, 1, 1
2, 1, 1, 1, 1
2, 1, 1, 0, 1, 1
2, 1, 1, 1, 1, 1, 1
2, 1, 1, 1, 1, 0, 1, 1
2, 1, 1, 1, 1, 0, 1, 1, 1
2, 1, 1, 0, 1, 0, 1, 0, 1, 1
MAPLE
A054521 := proc(n, k) if gcd(n, k) = 1 then 1; else 0 ; fi; end:
A051731 := proc(n, k) if (n mod k) = 0 then 1; else 0 ; fi; end:
A164295 := proc(n, k) A054521(n, k)+A051731(n, k) ; end: seq(seq(A164295(n, k), k=1..n), n=1..10) ;
MATHEMATICA
T[n_, k_] = If[Mod[n, k] == 0, 1, 0] + If[GCD[n, k] == 1, 1, 0];
Table[Table[T[n, k], {k, 1, n}], {n, 1, 10}]; Flatten[%]
CROSSREFS
Sequence in context: A029441 A342263 A109495 * A035214 A071292 A088569
KEYWORD
nonn,tabl
AUTHOR
Roger L. Bagula and Mats Granvik, Aug 12 2009
EXTENSIONS
Edited by the Associate Editors of the OEIS, Aug 28 2009
STATUS
approved