login
A158935
a(n)= -3a(n-1)-3a(n-2)-2a(n-3), n>3. a(0)=4, a(1)=4, a(2)=-5, a(3)=4.
1
4, 4, -5, 4, -5, 13, -32, 67, -131, 256, -509, 1021, -2048, 4099, -8195, 16384, -32765, 65533, -131072, 262147, -524291, 1048576, -2097149, 4194301, -8388608, 16777219, -33554435, 67108864, -134217725, 268435453, -536870912, 1073741827, -2147483651
OFFSET
0,1
COMMENTS
The third column of the array of differences described in A153130. The first two columns are in A158916 and A158987. Taking differences like in A158926 keeps the recurrence.
Also the inverse binomial transform of A153130 if the first two items of A153130 are omitted.
FORMULA
a(n)= A154589(n) + A099838(n+2).
G.f.: (4+16*x+19*x^2+9*x^3)/((2*x+1)*(1+x+x^2)). - R. J. Mathar, Apr 08 2009
MATHEMATICA
Join[{4}, LinearRecurrence[{-3, -3, -2}, {4, -5, 4}, 50]] (* Harvey P. Dale, May 25 2011 *)
CROSSREFS
Sequence in context: A161758 A046566 A046593 * A226446 A158086 A364995
KEYWORD
sign,easy
AUTHOR
Paul Curtz, Mar 31 2009
EXTENSIONS
Partially edited and extended by R. J. Mathar, Apr 08 2009
Edited by N. J. A. Sloane, Apr 08 2009
STATUS
approved