login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A158935 a(n)= -3a(n-1)-3a(n-2)-2a(n-3), n>3. a(0)=4, a(1)=4, a(2)=-5, a(3)=4. 1
4, 4, -5, 4, -5, 13, -32, 67, -131, 256, -509, 1021, -2048, 4099, -8195, 16384, -32765, 65533, -131072, 262147, -524291, 1048576, -2097149, 4194301, -8388608, 16777219, -33554435, 67108864, -134217725, 268435453, -536870912, 1073741827, -2147483651 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

The third column of the array of differences described in A153130. The first two columns are in A158916 and A158987. Taking differences like in A158926 keeps the recurrence.

Also the inverse binomial transform of A153130 if the first two items of A153130 are omitted.

LINKS

Table of n, a(n) for n=0..32.

Index entries for linear recurrences with constant coefficients, signature (-3, -3, -2).

FORMULA

a(n)= A154589(n) + A099838(n+2).

G.f.: (4+16*x+19*x^2+9*x^3)/((2*x+1)*(1+x+x^2)). - R. J. Mathar, Apr 08 2009

a(n)=(1/2)*I*sqrt(3)*[ -(1/2)+(1/2)*I*sqrt(3)]^(n-2)-(3/2)*[ -(1/2)-(1/2)*I*sqrt(3)]^(n-2)-(3/2)*[ -(1/2)+(1/2)*I*sqrt(3)]^(n-2)-2*(-2)^(n-2)-(1/2)*I*sqrt(3)*[ -(1/2)-(1/2)*I*sqrt(3)]^(n-2)+(9/2)*[C(2*n,n) mod 2], with n>=0 [From Paolo P. Lava, Apr 15 2009]

MATHEMATICA

Join[{4}, LinearRecurrence[{-3, -3, -2}, {4, -5, 4}, 50]] (* Harvey P. Dale, May 25 2011 *)

CROSSREFS

Sequence in context: A161758 A046566 A046593 * A226446 A158086 A195783

Adjacent sequences:  A158932 A158933 A158934 * A158936 A158937 A158938

KEYWORD

sign,easy

AUTHOR

Paul Curtz, Mar 31 2009

EXTENSIONS

Partially edited and extended by R. J. Mathar, Apr 08 2009

Edited by N. J. A. Sloane, Apr 08 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 16 12:39 EDT 2019. Contains 327112 sequences. (Running on oeis4.)